Psychosom Med.

2007 Feb–Mar; 69(2): 149–157.

Angela J. Grippo, Ph.D.,* Bruce S. Cushing, Ph.D., and C. Sue Carter, Ph.D.

Abstract

Objective

Previous evidence suggests that responses to social stressors may play a mechanistic role in the behavioral and physiological changes associated with affective disorders such as depression. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that share features of social behavior with humans, and therefore might provide a useful model for examining social regulation of behaviors and physiological responses related to depression. In the present study we hypothesized that social isolation in female prairie voles would induce depression-relevant behaviors and altered neuroendocrine responses to an acute social stressor.

Methods

Twenty adult female prairie voles were exposed to either 60 days of social isolation or paired (control) housing, and tested for a depression-like behavior (anhedonia), numbers of corticotropin-releasing factor- and oxytocin-immunoreactive cells in the paraventricular nucleus of the hypothalamus, and circulating levels of hormones and peptide in response to an acute social stressor (resident-intruder test).

Results

Chronic social isolation produced anhedonia, measured by a reduction in sucrose intake and sucrose preference relative to paired animals. Compared to paired animals, isolated prairie voles displayed increased plasma hormone and peptide levels (oxytocin, arginine vasopressin, and corticosterone) following a 5-minute resident-intruder test, mirrored by an increased number of oxytocin- and corticotropin-releasing factor-immunoreactive cells in the hypothalamic paraventricular nucleus.

Conclusions

These findings suggest that isolation in a socially monogamous rodent model induces both behavioral and neuroendocrine changes that are relevant to depression, and may provide insight into the mechanisms that underlie the development and/or maintenance of depressive disorders in humans.

Keywords: Affective disorders, Corticotropin-releasing factor, Hypothalamic-pituitary-adrenal axis, Oxytocin, Paraventricular nucleus, Stress