Comment: There is a high degree of overlap between brain regions involved in processing natural rewards and drugs of abuse.

үзүндү:

Repeated sexual encounters also increase sucrose consumption and place preference for low dose amphetamine, suggesting cross-sensitization between sexual experience and drug reward (Wallace жана башкалар., 2008; Pitchers жана башкалар, 2010b). Also similar to the sensitizing effects of drugs of abuse (Segal and Mandell, 1974; Robinson and Becker, 1982; Robinson and Berridge, 2008), repeated sexual encounters sensitize the NAc DA response to a later sexual encounter (Kohlert and Meisel, 1999).

As described for food reward, sexual experience can also lead to activation of plasticity-related signaling cascades. The transcription factor delta FosB is increased in the NAc, PFC, dorsal striatum, and VTA following repeated sexual behavior (Wallace жана башкалар., 2008; Pitchers жана башкалар., 2010b). This natural increase in delta FosB or viral overexpression of delta FosB within the NAc modulates sexual performance, and NAc blockade of delta FosB attenuates this behavior (Hedges жана башкалар, 2009; Pitchers жана башкалар., 2010b)…. This unique selectivity suggests that activation of this signaling cascade in NAc and other mesocorticolimbic regions may specifically lead to plasticity that promotes future appetitive behavior (Girault жана башкалар, 2007).

Neural structure in the mesocorticolimbic system is also altered following sexual experience. Pitchers and colleagues recently reported an increase in dendrites and dendritic spines within the NAc in rats during “withdrawal” from sexual experience (Pitchers жана башкалар., 2010a). This expands on other data demonstrating that sexual experience can alter dendritic morphology in a manner analogous to repeated drug exposure (Fiorino and Kolb, 2003; Robinson and Kolb, 2004; Meisel and Mullins, 2006).

… Following timed exposure to methamphetamine and sexual experience, there was significant coincidence of neurons activated by these two rewards in the NAc, anterior cingulate cortex, and basolateral amygdala (Frohmader жана башкалар., 2010).

Neuropharmacology

2011;61(7):1109–1122. doi:10.1016/j.neuropharm.2011.03.010

Olsen CM.

жалпылаган

There is a high degree of overlap between brain regions involved in processing natural rewards and drugs of abuse. “Non-drug” or “behavioral” addictions have become increasingly documented in the clinic, and pathologies include compulsive activities such as shopping, eating, exercising, sexual behavior, and gambling. Like drug addiction, non-drug addictions manifest in symptoms including craving, impaired control over the behavior, tolerance, withdrawal, and high rates of relapse. These alterations in behavior suggest that plasticity may be occurring in brain regions associated with drug addiction. In this review, I summarize data demonstrating that exposure to non-drug rewards can alter neural plasticity in regions of the brain that are affected by drugs of abuse. Research suggests that there are several similarities between neuroplasticity induced by natural and drug rewards and that, depending on the reward, repeated exposure to natural rewards might induce neuroplasticity that either promotes or counteracts addictive behavior.

Keywords: жаңылык издеген, көз карандылык, ниеттерибиз күчөтүү, жүрүм-турум көз карандылык, пластикалык
Баруу:

1. тааныштыруу

There are now myriad television shows documenting people who compulsively engage in behaviors that may otherwise be considered normal, but do so in a manner that has a serious negative impact on their lives and those of their families. People suffering from what may be considered “non-drug” or “behavioral” addictions are becoming increasingly documented in the clinic, and symptoms include compulsive activities such as shopping, eating, exercising, sexual behavior, gambling, and video games (Holden, 2001; Grant жана башкалар, 2006a). While the subjects of these television shows may seem like extreme and rare cases, these types of disorders are surprisingly common. Prevalence rates in the United States have been estimated at 1–2% for pathological gambling (Welte жана башкалар, 2001), 5% for compulsive sexual behavior (Schaffer and Zimmerman, 1990), 2.8% for binge-eating disorder (Hudson жана башкалар, 2007) and 5–6% for compulsive buying (Black, 2007).

Although the DSM-IV acknowledges these disorders and other “addictive” behaviors, they are currently not classified as behavioral addictions. This may be due to the fact that the DSM-IV avoids the term addiction even in reference to drugs of abuse, opting instead for the terms “abuse” and “dependence”. Within the DSM-IV, behavioral addictions are grouped under categories such as “substance-related disorders”, “eating disorders”, and “impulse control disorders not elsewhere classified” (Holden, 2001; Potenza, 2006). More recently, there has been a trend toward thinking about these non-drug addictions to be more like substance abuse and dependence (Rogers and Smit, 2000; Wang жана башкалар, 2004b; Volkow and Wise, 2005; Grant жана башкалар., 2006a; Petry, 2006; Teegarden and Bale, 2007; Deadwyler, 2010; Grant жана башкалар, 2010). In fact, non-drug addictions fit the classical definition of addiction that includes engaging in the behavior despite serious negative consequences (Holden, 2001; Hyman жана башкалар, 2006). This phenomenon has been appreciated by psychiatrists, and proposed revisions for the DSM-5 include a category of Addiction and Related Behavior ((APA), 2010). Within this category, a Behavioral Addictions category has been proposed, which would include pathological gambling and potentially internet addiction ((APA), 2010; O’Brien, 2010; Tao жана башкалар, 2010).

Like substance addictions, non-drug addictions manifest in similar psychological and behavioral patterns including craving, impaired control over the behavior, tolerance, withdrawal, and high rates of relapse (Marks, 1990; Lejoyeux жана башкалар, 2000; National Institute on Drug Abuse (NIDA) жана башкалар, 2002; Potenza, 2006). Similarities between drugs and non-drug rewards can also be seen physiologically. Functional neuroimaging studies in humans have shown that gambling (Breiter жана башкалар, 2001), shopping (Knutson жана башкалар, 2007), orgasm (Komisaruk жана башкалар, 2004), playing video games (Koepp жана башкалар, 1998; Hoeft жана башкалар, 2008) and the sight of appetizing food (Wang жана башкалар, 2004a) activate many of the same brain regions (i.e., the mesocorticolimbic system and extended amygdala) as drugs of abuse (Volkow жана башкалар, 2004). This article will review preclinical evidence that natural reinforcers are capable of leading to plasticity in behavior and neurotransmission that is often reminiscent of adaptations seen following exposure to drugs of abuse, especially psychostimulants. For the sake of the present review, plasticity will be broadly defined as any adaptation in behavior or neural function, similar to the usage of the term originally described by William James (James, 1890). Synaptic plasticity will refer to an alteration at the level of the synapse, typically measured using electrophysiological methods (e.g., changes in AMPA/NMDA ratio). Neurochemical plasticity will refer to altered neurotransmission (synaptic or intracellular) measured biochemically by differences in basal or evoked levels of transmitter, receptor, or transporter, or by an enduring change in phosphorylation state of any of these molecules. Behavioral plasticity will refer to any adaptation in behavior (several examples are discussed in Section 1.1).

Neural circuits that underlie encoding of natural rewards are thought to be “hijacked” by drugs of abuse, and plasticity in these circuits is believed to be responsible for the behavioral plasticity (i.e. increased drug seeking and craving) characteristic of addiction (Kelley and Berridge, 2002; Aston-Jones and Harris, 2004; Kalivas and O’Brien, 2008; Wanat жана башкалар, 2009b). Evidence for this hijacking is seen in several forms of plasticity in brain regions known to affect motivation, executive function, and reward processing (Kalivas and O’Brien, 2008; Thomas жана башкалар, 2008; Frascella жана башкалар, 2010; Koob and Volkow, 2010; Pierce and Vanderschuren, 2010; Russo жана башкалар, 2010). Animal models have given us a snapshot of the profound changes that administration of drugs of abuse can impart. Adaptations range from altered neurotransmitter levels to altered cell morphology and changes in transcriptional activity (Robinson and Kolb, 2004; Kalivas жана башкалар, 2009; Russo жана башкалар., 2010). Several groups have also reported drugs of abuse altering synaptic plasticity in key regions of the brain implicated in drug addiction (for review, see (Winder жана башкалар, 2002; Kauer and Malenka, 2007; Luscher and Bellone, 2008; Thomas жана башкалар., 2008). The majority of the neuroadaptations described have been in regions of the mesocorticolimbic system and the extended amygdala (Grueter жана башкалар, 2006; Schramm-Sapyta жана башкалар, 2006; Kauer and Malenka, 2007; Kalivas жана башкалар., 2009; Koob and Volkow, 2010; Russo жана башкалар., 2010; Mameli жана башкалар, 2011). Based on known roles of these regions in regulation of mood, processing of natural rewards, and motivated behavior, it is widely believed that this plasticity underlies the maladaptive changes in behavior associated with addiction. In humans, some of these changes include impaired decision making, decreased pleasure from natural rewards (anhedonia), and craving (Majewska, 1996; Bechara, 2005; O’Brien, 2005). In animal models, these altered behaviors can be studied with neurobehavioral measures following a history of drug administration, and analogous brain regions are thought to mediate these measures (Markou and Koob, 1991; Shaham жана башкалар, 2003; Bevins and Besheer, 2005; Winstanley, 2007). These measures provide the basis for preclinical testing of pharmacotherapies that may be useful in the treatment of addiction.

Recent evidence suggests that non-drug addictions may lead to neuroadaptations similar to those reported with long-term drug use. While the majority of these examples of plasticity are emerging from animal studies, reports also include examples from human studies. In this review, we will explore the concept that natural rewards are capable of inducing neural and behavioral plasticity in ways analogous to drug addiction. Future study of this phenomenon may give us insights into behavioral addictions and promote “crossover” pharmacotherapies that could benefit both drug and non-drug addictions (Frascella жана башкалар., 2010).

1.1. жүрүм-турумдук пластикалык жана көз карандылык теориялары

In the field of drug addiction, several theories have emerged to explain how neural and behavioral plasticity contribute to addiction. One theory is that of incentive-sensitization (Robinson and Berridge, 1993, 2001, 2008). According to this theory, in susceptible individuals, repeated drug exposure leads to a sensitization (reverse tolerance) of the incentive-motivational properties of drugs and drug-related cues. This alteration is at least in part mediated by sensitized nucleus accumbens (NAc) dopamine (DA) release following exposure to drug-related cues. Behaviorally, this is associated with increased wanting and craving of drugs when one is exposed to cues that are associated with intake (i.e. a crack pipe). In animal models, incentive sensitization can be modeled by measuring drug-seeking behaviors in response to cues paired with drug administration (Robinson and Berridge, 2008). Locomotor sensitization also occurs with repeated administration of several drugs of abuse and may be an indirect measure of incentive sensitization, although locomotor and incentive sensitization are dissociable processes (Robinson and Berridge, 2008). Notably, sensitization processes can also translate between drug and non-drug rewards (Fiorino and Phillips, 1999; Avena and Hoebel, 2003b; Robinson and Berridge, 2008). In humans, the role of dopamine signaling in incentive-sensitization processes has recently been highlighted by the observation of a dopamine dysregulation syndrome in some patients taking dopaminergic drugs. This syndrome is characterized by a medication-induced increase in (or compulsive) engagement in non-drug rewards such as gambling, shopping, or sex (Evans жана башкалар, 2006; Aiken, 2007; Lader, 2008).

Another theory that has been developed to explain how drug-related plasticity contributes to addiction is the opponent process theory (Solomon, 1980; Koob жана башкалар, 1989; Koob and Le Moal, 2008). Briefly, this theory of motivation states that there are two processes engaged during repeated experiences: the first involves affective or hedonic habituation, the second process is an affective or hedonic withdrawal (Solomon and Corbit, 1974). An example provided by Solomon related to opiate use, where tolerance developed to the acute hedonic effects following repeated drug exposure, and negative symptoms of withdrawal would emerge which would further motivate drug use (negative reinforcement) (Solomon, 1980). This early version of the theory was originally developed to explain behavior altered by exposure to both drug and non-drug rewards (for review, see (Solomon, 1980)). An expansion of opponent process theory is the allostatic model of brain motivational systems (Koob and Le Moal, 2001, 2008). Briefly, this model includes the opposing concepts of reward and anti-reward, while the latter involves a failure to return to a homeostatic set point, leading to negative affect and reduction in natural reward, which increases motivation to relieve this state (Koob and Le Moal, 2008). Evidence for neuroplasticity that regulates this altered affective state comes from several findings, including decreased basal NAc DA following drug withdrawal in rats (Weiss жана башкалар, 1992), decreased striatal D2 receptors in striatum and accumbens of human alcoholics and abstinent heroin addicts (Volkow жана башкалар., 2004; Zijlstra жана башкалар, 2008), and increased intracranial self-stimulation (ICSS) thresholds during cocaine withdrawal in rats (Markou and Koob, 1991). In addition to alterations in mesolimbic DA signaling, central stress systems are also recruited. A particularly robust example is increased CRF signaling in the hypothalamus, central nucleus of the amygdala, and bed nucleus of the stria terminalis following withdrawal of many drugs of abuse (Koob and Le Moal, 2008).

A third theory to describe neuroplasticity contributing to addiction is the recruitment of habit-based neurocircuitry throughout repeated drug exposure (Everitt жана башкалар, 2001; Everitt жана башкалар, 2008; Graybiel, 2008; Ostlund and Balleine, 2008; Pierce and Vanderschuren, 2010). For example, non-human primates self-administering cocaine show changes in glucose metabolism and levels of dopamine D2 receptor and dopamine transporter that initially affect the ventral striatum, but with increasing exposure expand into the dorsal striatum (Porrino жана башкалар, 2004a; Porrino жана башкалар, 2004b). This expansion “suggests that the elements of the behavioral repertoire outside of the influence of cocaine become smaller and smaller with increasing durations of exposure to drug use resulting in cocaine’s dominance over all aspects of the addict’s life” (Porrino жана башкалар., 2004a). This progressive plasticity from ventral to dorsal striatum parallels an older literature on the transition from goal- to habit-based learning (Balleine and Dickinson, 1998) and has an anatomical correlate that supports the ability of extended reward-based learning to engage progressively more dorsal aspects of the striatum (Haber жана башкалар, 2000).

Баруу:

2. Тамак-аш сыйлык

Perhaps the most extensively studied reward is that of food. Food is the quintessential reward in many rodent studies and has been used as a reinforcer in procedures such as operant (self-administration) tasks, runway tests, maze learning, gambling tasks, and place conditioning (Skinner, 1930; Ettenberg and Camp, 1986; Kandel жана башкалар, 2000; Kelley, 2004; Tzschentke, 2007; Zeeb жана башкалар, 2009). In rats that were trained to press a lever to receive intravenous self-administration of drugs, highly palatable foods such as sugar and saccharin were shown to reduce self-administration of cocaine and heroin (Carroll жана башкалар, 1989; Lenoir and Ahmed, 2008), and these natural reinforcers have been demonstrated to outcompete cocaine in choice self-administration in the majority of rats tested (Lenoir жана башкалар, 2007; Cantin жана башкалар, 2010). This would suggest that sweet foods have a higher reinforcing value than cocaine, even in animals with an extensive history of drug intake (Cantin жана башкалар., 2010). While this phenomenon could appear as a weakness in current models of cocaine addiction, a minority of rats prefer cocaine to sugar or saccharin (Cantin жана башкалар., 2010). It is possible that these animals may represent a “vulnerable” population, which is more relevant to the human condition. This notion is explored more in the Discussion (Section 6.1).

Work from many laboratories has demonstrated examples of plasticity in reward-related circuits following access to palatable food. Neurobehavioral adaptations following a history of palatable food intake have been likened to those observed following drugs of abuse, prompting several scientists to propose that dysregulation of food intake may be similar to addiction (Hoebel жана башкалар, 1989; Le Magnen, 1990; Wang жана башкалар., 2004b; Volkow and Wise, 2005; Davis and Carter, 2009; Nair жана башкалар, 2009a; Corsica and Pelchat, 2010). The laboratory of Bartley Hoebel has extensive data demonstrating behavioral plasticity following a history of intermittent sugar access, which has led he and his colleagues to propose that sugar consumption that meets criteria for addiction (Avena жана башкалар, 2008). This notion is supported by the fact that several examples of plasticity seen following repeated drug exposure are also observed following intermittent access to not only sugar, but also fat. Different types of palatable food have been used to study plasticity, including high sugar, high fat, and “Western” or “Cafeteria” diets to try to model different human eating patterns.

During repeated access to sugar, escalation of intake is observed (Colantuoni жана башкалар, 2001), a phenomenon previously associated with cocaine and heroin self-administration (Ahmed and Koob, 1998; Roberts жана башкалар, 2007). Escalation is an increase in intake that occurs during the initial phase (e.g. the first hour of a six hour session) of self-administration after a history of repeated sessions, a phenomenon thought to mimic human patterns of drug intake (Koob and Kreek, 2007). Following removal of sugar or fat access, withdrawal symptoms including anxiety- and depressive-like behaviors emerge (Colantuoni жана башкалар, 2002; Teegarden and Bale, 2007). After this period of “abstinence”, operant testing reveals “craving” and “seeking” behavior for sugar (Avena жана башкалар, 2005) or fat (Ward жана башкалар, 2007), as well as “incubation of craving” (Grimm жана башкалар, 2001; Лу жана башкалар, 2004; Grimm жана башкалар, 2005), and “relapse” (Nair жана башкалар, 2009b) following abstinence from sugar. In fact, when given a re-exposure to sugar after a period of abstinence, animals consume a much greater amount of sugar than during previous sessions (Avena жана башкалар., 2005). This deprivation effect was originally described for alcohol (Sinclair and Senter, 1968), and is thought to be another preclinical model of craving and relapse (McBride and Li, 1998; Spanagel and Holter, 1999). Finally, following intermittent exposure to a high fat diet, food-seeking was continued despite adverse consequences (Teegarden and Bale, 2007; Johnson and Kenny, 2010), which has been proposed as a animal corollary for risky acquisition of drugs seen in human addicts (Deroche-Gamonet жана башкалар, 2004).

Another indication of plasticity induced by diet is that a “cross-sensitization” of the locomotor activity between intermittent sugar intake and psychostimulants can be induced in either order of treatment (Avena and Hoebel, 2003b, a; Gosnell, 2005). Cross-sensitization is a phenomenon that occurs following previous exposure to an environmental or pharmacological agent (such as a stressor or psychostimulant, respectively) that results in an enhanced response (typically locomotor) to a different environmental or pharmacological agent (Antelman жана башкалар, 1980; O’Donnell and Miczek, 1980; Kalivas жана башкалар, 1986; Vezina жана башкалар, 1989). Sensitization processes involving psychostimulants involve mesolimbic DA neurons, and cross-sensitization is believed to occur from common mechanisms of action between two stimuli (Antelman жана башкалар., 1980; Herman жана башкалар, 1984; Kalivas and Stewart, 1991; Self and Nestler, 1995). Cross-sensitization to psychostimulants is also seen in animals fed a high sugar/fat diet during perinatal and post-weanling periods (Shalev жана башкалар, 2010). To determine if exposure to a high fat diet could alter the “rewarding” (reinforcing) effects of a drug of abuse, Davis et al. tested animals fed a high fat diet for altered sensitivity to amphetamine using a conditioned place preference (CPP) paradigm (Davis жана башкалар, 2008). In this model, animals are first allowed to explore a multi-chamber apparatus (the pre-test) where each chamber has distinct visual, tactile, and/or olfactory cues. During conditioning sessions, the animals are confined to one of the chambers and paired with a reward (e.g. amphetamine injection or food in the chamber). These sessions are repeated and interleaved with conditioning sessions that involve pairing of another chamber of the apparatus with the control condition (e.g. saline injection or no food). The test phase is done under the same conditions as the pre-test and CPP is demonstrated when animals show a significant preference for the chamber that was paired with the drug or non-drug reward. Davis et al. found that high fat fed rats failed to develop conditioned place preference for amphetamine, suggesting a cross-tolerance between the intake of high fat food and the conditioned reinforcing effects of amphetamine (Davis жана башкалар., 2008).

Withdrawal is a phenomenon also seen following repeated exposure to highly palatable foods. Somatic signs of withdrawal commonly associated with naloxone precipitated opiate withdrawal can be also be precipitated by naloxone or food restriction following intermittent sugar (Colantuoni жана башкалар., 2002) or a cafeteria style diet (Le Magnen, 1990). Elevated thresholds for brain stimulation reward, which are commonly observed following withdrawal from cocaine, alcohol, amphetamine, and nicotine (Simpson and Annau, 1977; Cassens жана башкалар, 1981; Markou and Koob, 1991; Schulteis жана башкалар, 1995; Wise and Munn, 1995; Epping-Jordan жана башкалар, 1998; Rylkova жана башкалар, 2009), are observed in rats following 40 days access to a cafeteria diet in addition to regular chow, and this effect persisted at least 14 days following withdrawal of the high fat food (Johnson and Kenny, 2010). This measure has commonly been used to describe a state of relative anhedonia characterized by lower tone of endogenous brain reward systems (Kenny, 2007; Wise, 2008; Bruijnzeel, 2009; Carlezon and Thomas, 2009) and is thought to regulate continued intake of drugs (and perhaps food) to relieve this state (a phenomenon known as negative reinforcement) (Cottone жана башкалар, 2008; Koob, 2010).

In addition to behavioral plasticity, excessive intake of certain types of food has also been associated with neurochemical plasticity. In particular, dopamine and opioid signaling appears to be susceptible to adaptations following intermittent access to high sugar or high fat foods. In the NAc, intermittent feeding episodes with access to sugar and chow increase D1 and D3 receptor content (either mRNA or protein), while decreasing D2 receptors in the NAc and dorsal striatum (Colantuoni жана башкалар., 2001; Bello жана башкалар, 2002; Spangler жана башкалар, 2004). This effect was also observed with extended access to a high fat diet in rats, with the greatest decrease in D2 occurring in the heaviest rats (Johnson and Kenny, 2010). These adaptations in accumbal and striatal dopamine receptors parallel those seen in rodents repeatedly administered cocaine or morphine (Alburges жана башкалар, 1993; Unterwald жана башкалар, 1994a; Spangler жана башкалар, 2003; Conrad жана башкалар, 2010). Further, reductions in striatal D2 receptors are also seen in human psychostimulant users and alcoholics (Volkow жана башкалар, 1990; Volkow жана башкалар, 1993; Volkow жана башкалар, 1996; Zijlstra жана башкалар., 2008), and in obese adults, where D2 content was found to negatively correlate with body mass index (Wang жана башкалар., 2004b). Endogenous opioid signaling is also affected profoundly by diet (Gosnell and Levine, 2009). Intermittent sugar or sweet/fat diet increases mu opioid receptor binding in the NAc, cingulate cortex, hippocampus and locus coeruleus (Colantuoni жана башкалар., 2001) and decreases enkephalin mRNA in NAc (Kelley жана башкалар, 2003; Spangler жана башкалар., 2004). Neurochemical plasticity in mesolimbic DA and opioid signaling has also been demonstrated to occur in the offspring of female mice fed high fat food during pregnancy (Vucetic жана башкалар, 2010). These offspring have elevated dopamine transporter (DAT) in the ventral tegmental area (VTA), NAc, and prefrontal cortex (PFC), and increased preproenkephalin and mu opioid receptors in the NAc and PFC (Vucetic жана башкалар., 2010). Interestingly, these alterations were associated with epigenetic modification (hypomethylation) of the promoter elements for all of the proteins affected.

Effects on the corticotropin-releasing factor (CRF) system by high fat/high sugar diets are also reminiscent of those imparted by drugs of abuse. CRF in the amygdala was increased following a 24 hour withdrawal from a high fat diet, while animals maintained on this diet had unaltered amygdala CRF (Teegarden and Bale, 2007). In preclinical models, this altered CRF signaling is thought to underlie negative reinforcement processes and increased “binge” intake of ethanol (Koob, 2010). As a result, CRF antagonists are being proposed for the treatment of alcoholism and drug addiction (Sarnyai жана башкалар, 2001; Koob жана башкалар, 2009; Lowery and Thiele, 2010). Based on these data, CRF antagonists may also be expected to help individuals remain abstinent from high fat/high sugar foods during a transition to a healthier diet.

Transcription factors are another class of molecule implicated in mediating enduring effects of drugs of abuse by directly affecting gene expression (McClung and Nestler, 2008). In support of the idea that food is capable of inducing neural plasticity, several transcription factors are also altered by diet. NAc phospho-CREB was reduced 24 hours following withdrawal from a high carbohydrate diet and both 24 hours and 1 week following withdrawal from a high fat diet, while the transcription factor delta FosB is increased during access to high fat diet (Teegarden and Bale, 2007) or sucrose (Wallace жана башкалар, 2008). In the NAc, decreased phospho-CREB is also seen during periods of withdrawal from amphetamine and morphine (McDaid жана башкалар, 2006a; McDaid жана башкалар, 2006b), and delta FosB is also increased following withdrawal from these drugs as well as cocaine, nicotine, ethanol, and phencyclidine (McClung жана башкалар, 2004; McDaid жана башкалар., 2006a; McDaid жана башкалар., 2006b). Similar to their proposed role in increasing drug seeking behavior, these neuroadaptations may also affect subsequent feeding behavior, as overexpression of delta FosB in the ventral striatum increases motivation to obtain food (Olausson жана башкалар, 2006) and sucrose (Wallace жана башкалар., 2008).

көз карандылык байланышкан схемотехникасын кичинекей пластикалык менен ымаласы бар бододо, administration of numerous drugs of abuse. In the VTA, several classes of addictive, but not non-addictive psychoactive drugs induce synaptic plasticity (Saal жана башкалар, 2003; Stuber жана башкалар, 2008a; Wanat жана башкалар, 2009a). To date, there is very little data directly measuring the effects of food on synaptic plasticity in addiction-related neurocircuitry. Operant learning associated with food (chow or sucrose pellets) increased AMPA/NMDA ratios in the ventral tegmental area for up to seven days following training (Chen жана башкалар, 2008a). When cocaine was self-administered, the effect lasted up to three months, and this effect was not seen with passive administration of cocaine (Chen жана башкалар., 2008a). Miniature EPSP frequency in the VTA was also increased for up to three months following cocaine self-administration, and up to three weeks following sucrose (but not chow) self-administration, suggesting that glutamatergic signaling is strengthened pre- and post-synaptically (Chen жана башкалар., 2008a).

These data suggest that some measures of synaptic plasticity in the mesolimbic system (e.g. AMPA/NMDA ratios) may be associated with appetitive learning in general. This is supported by the fact that Pavlovian learning associated with food reward occluded VTA LTP during acquisition (day 3 of conditioning) (Stuber жана башкалар, 2008b). Although evidence of plasticity was observed on day 3, it was absent two days later, suggesting that self-administration distinctly leads to more enduring plasticity in these circuits (Stuber жана башкалар., 2008b). This appears to also be the case for plasticity associated with cocaine self-administration, as repeated non-contingent cocaine-induced plasticity in the VTA is also short-lived (Borgland жана башкалар, 2004; Chen жана башкалар., 2008a). The nature of these operant studies does not, however, discount the fact that extended access to palatable food may lead to protracted synaptic plasticity. During typical operant conditioning studies, animals are allowed much less access to food reward than during free-feeding or scheduled access. Future studies will need to be conducted to determine the effects of extended access to highly palatable food on synaptic plasticity.

Баруу:

3. Сексуалдык сыйлык

Sex is a reward that, much like food, is critical for the survival of a species. Like food and several drugs of abuse, sexual behavior elevates mesolimbic DA (Meisel жана башкалар, 1993; Mermelstein and Becker, 1995). It is also a behavior that has been measured in terms of reinforcing value by operant (Beach and Jordan, 1956; Caggiula and Hoebel, 1966; Everitt жана башкалар, 1987; Crawford жана башкалар, 1993) and place conditioning methods (Paredes and Vazquez, 1999; Martinez and Paredes, 2001; Tzschentke, 2007). Human subjects in treatment for compulsive sexual behavior (categorized as “Sexual Disorder Not Otherwise Specified” in the DSM-IV) have many symptoms associated with drug addiction, including escalation, withdrawal, difficulty in stopping or reducing activity, and continued sexual behavior despite adverse consequences (Orford, 1978; Gold and Heffner, 1998; Garcia and Thibaut, 2010). Considering these adaptations in behavior, it is reasonable to imagine significant neuroadaptations occurring within mesocorticolimbic circuitry. As seen with repeated sugar exposure, repeated sexual encounters in male rats cross-sensitized with amphetamine in a locomotor assay (Pitchers жана башкалар, 2010a). Repeated sexual encounters also increase sucrose consumption and place preference for low dose amphetamine, suggesting cross-sensitization between sexual experience and drug reward (Wallace жана башкалар., 2008; Pitchers жана башкалар, 2010b). Also similar to the sensitizing effects of drugs of abuse (Segal and Mandell, 1974; Robinson and Becker, 1982; Robinson and Berridge, 2008), repeated sexual encounters sensitize the NAc DA response to a later sexual encounter (Kohlert and Meisel, 1999). Cross-sensitization is also bidirectional, as a history of amphetamine administration facilitates sexual behavior and enhances the associated increase in NAc DA (Fiorino and Phillips, 1999).

As described for food reward, sexual experience can also lead to activation of plasticity-related signaling cascades. The transcription factor delta FosB is increased in the NAc, PFC, dorsal striatum, and VTA following repeated sexual behavior (Wallace жана башкалар., 2008; Pitchers жана башкалар., 2010b). This natural increase in delta FosB or viral overexpression of delta FosB within the NAc modulates sexual performance, and NAc blockade of delta FosB attenuates this behavior (Hedges жана башкалар, 2009; Pitchers жана башкалар., 2010b). Further, viral overexpression of delta FosB enhances the conditioned place preference for an environment paired with sexual experience (Hedges жана башкалар., 2009). The MAP kinase signaling pathway is another plasticity-related pathway that is engaged during repeated sexual experience (Bradley жана башкалар, 2005). In sexually experienced females, a sexual encounter led to elevated pERK2 in the NAc (Meisel and Mullins, 2006). Increases in NAc pERK are induced by several drugs of abuse, but not by non-addictive psychoactive drugs, suggesting that NAc ERK activation may be associated with plasticity associated with addiction (Valjent жана башкалар, 2004). Further, a recent study found that pERK was induced by sexual activity in the same neurons of the NAc, basolateral amygdala, and anterior cingulate cortex that were previously activated by methamphetamine (Frohmader жана башкалар, 2010). This unique selectivity suggests that activation of this signaling cascade in NAc and other mesocorticolimbic regions may specifically lead to plasticity that promotes future appetitive behavior (Girault жана башкалар, 2007).

Neural structure in the mesocorticolimbic system is also altered following sexual experience. Pitchers and colleagues recently reported an increase in dendrites and dendritic spines within the NAc in rats during “withdrawal” from sexual experience (Pitchers жана башкалар., 2010a). This expands on other data demonstrating that sexual experience can alter dendritic morphology in a manner analogous to repeated drug exposure (Fiorino and Kolb, 2003; Robinson and Kolb, 2004; Meisel and Mullins, 2006).

Баруу:

4. Exercise сыйлык

Access to a running wheel for exercise serves as a reinforcer in laboratory rodents (Belke and Heyman, 1994; Belke and Dunlop, 1998; Lett жана башкалар, 2000). Like drugs of abuse and other natural rewards, exercise in rodents is associated with increased DA signaling in the NAc and striatum (Freed and Yamamoto, 1985; Hattori жана башкалар, 1994). Exercise also elevates brain and plasma levels of endogenous opioids in humans and rodents (Christie and Chesher, 1982; Janal жана башкалар, 1984; Schwarz and Kindermann, 1992; Asahina жана башкалар, 2003). One target of these opioids is the mu opiate receptor, a substrate of opiate drugs of abuse such as heroin and morphine. This overlap also appears to extend to behavioral responses to drugs of abuse. Unlike the natural rewards discussed thus far, most studies have found that exposure to exercise attenuates the effects of drugs of abuse. For example, self-administration of morphine, ethanol, and cocaine are all reduced following exercise (Cosgrove жана башкалар, 2002; Smith жана башкалар, 2008; Ehringer жана башкалар, 2009; Hosseini жана башкалар, 2009). Exercise experience attenuated CPP to MDMA and cocaine and also reduced the MDMA increase in NAc DA (Chen жана башкалар, 2008b; Thanos жана башкалар, 2010). Exercise prior to self-administration training was also able to reduce drug seeking and reinstatement, although in this study self-administration of cocaine was not affected (Zlebnik жана башкалар, 2010). In a similar study, cocaine seeking and cue reinstatement were reduced in rats that exercised during a period of drug abstinence (Lynch жана башкалар, 2010). In animals with a history of running wheel experience, withdrawal of wheel access leads to drug withdrawal-like symptoms including, increased anxiety and aggression, and susceptibility to naloxone-precipitated withdrawal (Hoffmann жана башкалар, 1987; Kanarek жана башкалар, 2009).

In addition to altered behavioral responses to drugs of abuse, there is neurochemical plasticity reflected by increased dynorphin in the striatum and NAc following running, a phenomenon also seen in human cocaine addicts and in animals following administration of cocaine or ethanol (Lindholm жана башкалар, 2000; Werme жана башкалар, 2000; Wee and Koob, 2010). Also reminiscent of drug associated neural plasticity, the transcription factor delta FosB is induced in the NAc of animals with wheel running experience (Werme жана башкалар, 2002). These changes may underlie the state of “withdrawal” that is observed following removal of running wheel access in animals with previous access (Hoffmann жана башкалар., 1987; Kanarek жана башкалар., 2009). Conversely, exercise during drug abstinence is also associated with a reduction in reinstatement-induced activation of ERK in the PFC (Lynch жана башкалар., 2010). This is an especially relevant finding considering the role of ERK in many aspects of addiction (Valjent жана башкалар., 2004; Lu жана башкалар, 2006; Girault жана башкалар., 2007) and the finding that ERK activation within the PFC is associated with incubation of drug craving (Koya жана башкалар, 2009). Striatal levels of the dopamine D2 receptor have also been reported to increase following exercise (MacRae жана башкалар, 1987; Foley and Fleshner, 2008), an effect that is opposite to that observed following psychostimulant self-administration in rodents, primates, and humans (Volkow жана башкалар., 1990; Nader жана башкалар, 2002; Conrad жана башкалар., 2010). It is possible that these adaptations may contribute to a “protective” effect of exercise in regards to drug abuse/addiction. Support for this idea comes from studies mentioned earlier in this section demonstrating reduced drug self-administration, seeking, and reinstatement in animals allowed to exercise. There is also support that exercise can “out-compete” drug self-administration, as wheel running reduces amphetamine intake when both reinforcers were concurrently available (Kanarek жана башкалар, 1995).

Exercise also has effects within the hippocampus, where it influences plasticity (reflected in elevated LTP and improved spatial learning) and increases neurogenesis and the expression of several plasticity-related genes (Kanarek жана башкалар., 1995; van Praag жана башкалар, 1999; Gomez-Pinilla жана башкалар, 2002; Molteni жана башкалар, 2002). Decreased hippocampal neurogenesis has been linked with depressive-like behaviors in preclinical studies (Duman жана башкалар, 1999; Sahay and Hen, 2007), and consistent with an ability to increase hippocampal neurogenesis, exercise has been demonstrated to have an antidepressant effect in a depressive line of rats (Bjornebekk жана башкалар, 2006), and to improve depressive symptoms in human patients (Ernst жана башкалар, 2006). Considering a recently reported link between suppression of hippocampal neurogenesis and increased cocaine intake and seeking behaviors in the rat (Noonan жана башкалар, 2010) along with previous evidence that exposure to stress (a treatment that reduces hippocampal neurogenesis), increases drug intake (Covington and Miczek, 2005), it is important to consider effects of exercise on hippocampal function in addition to those on mesolimbic function. Because exercise leads to plasticity in both depression-related circuitry (i.e. hippocampal) and drug-seeking related circuitry (i.e. the mesolimbic system), it is difficult to determine where the precise locus of the “anti drug seeking” effects of exercise exists.

Consistent with the effects of exercise on drug rewards, there is also evidence that running can decrease preference for natural reinforcers. Under conditions of limited food access, rats with constant access to running wheel will actually cease to eat to the point of death (Routtenberg and Kuznesof, 1967; Routtenberg, 1968). This extreme phenomenon is observed only when periods of food access occur with continued access to a running wheel, although it may suggest that exposure to exercise may reduce motivation in a general manner for both drug and non-drug reinforcers. A final consideration of the effects of exercise is that a running wheel housed within the animal cage may act as a form of environmental enrichment. While it is difficult to completely dissociate environmental enrichment from exercise (EE housed animals exercise more), dissociable effects of EE and exercise have been reported (van Praag жана башкалар., 1999; Olson жана башкалар, 2006).

Баруу:

5. Novelty / органолептикалык Дем / Экологиялык байытуу

Novel stimuli, sensory stimulation, and enriched environments are all reinforcing to animals, including rodents (Van de Weerd жана башкалар, 1998; Besheer жана башкалар, 1999; Bevins and Bardo, 1999; Mellen and Sevenich MacPhee, 2001; Dommett жана башкалар, 2005; Cain жана башкалар, 2006; Olsen and Winder, 2009). Novel environments, sensory stimuli, and environmental enrichment (EE) have all been shown to activate the mesolimbic DA system (Chiodo жана башкалар, 1980; Horvitz жана башкалар, 1997; Rebec жана башкалар, 1997a; Rebec жана башкалар, 1997b; Wood and Rebec, 2004; Dommett жана башкалар., 2005; Segovia жана башкалар, 2010), suggesting overlap with addiction circuitry. In human populations, sensation and novelty seeking have been linked to susceptibility, intake, and severity of drug abuse (Cloninger, 1987; Kelly жана башкалар, 2006); for review, see (Zuckerman, 1986). In rodents, response to novelty has also been correlated with subsequent drug self-administration (Piazza жана башкалар, 1989; Cain жана башкалар, 2005; Meyer жана башкалар, 2010), suggesting that these two phenotypes covary. Based on these and neurochemical data, there is thought to be overlap in mesocorticolimbic circuitry that underlies response to novelty and drugs of abuse (Rebec жана башкалар., 1997a; Rebec жана башкалар., 1997b; Bardo and Dwoskin, 2004). Sensory stimuli (especially visual and auditory stimuli) have been studied for their reinforcing properties (Marx жана башкалар, 1955; Stewart, 1960; Cain жана башкалар., 2006; Liu жана башкалар, 2007; Olsen and Winder, 2010), and we have recently demonstrated an involvement of dopaminergic and glutamatergic signaling in mediating the reinforcing properties of varied sensory stimuli (Olsen and Winder, 2009; Olsen жана башкалар, 2010). Plasticity following discrete exposure to novelty or sensory stimuli within parameters that would not be aversive is limited, although there is extensive evidence for neural plasticity following strong activation or deprivation of sensory systems (Kaas, 1991; Rauschecker, 1999; Uhlrich жана башкалар, 2005; Smith жана башкалар, 2009). However, there is a wealth of data on neural plasticity associated with housing in an enriched environment (which includes aspects of other topics discussed, including novelty and exercise; for more in-depth reviews, see (Kolb and Whishaw, 1998; van Praag жана башкалар, 2000a; Nithianantharajah and Hannan, 2006)). Hebb’s renowned theory of learning was influenced by results he obtained demonstrating that rats housed in an enriched environment (his own house) performed better at learning tasks than littermates housed in the laboratory (Hebb, 1947). Subsequent studies have identified drastic changes in brain weight, angiogenesis, neurogenesis, gliogenesis, and dendritic structure in response to environmental enrichment (EE) (Bennett жана башкалар, 1969; Greenough and Chang, 1989; Kolb and Whishaw, 1998; van Praag жана башкалар, 2000b). More recent data from microarray studies have shown that EE housing induces expression of gene cascades involved with NMDA-dependent plasticity and neuroprotection (Rampon жана башкалар, 2000). The same group found that exposure to the EE environment for only 3 hours (i.e. exposure to numerous novel stimuli) had similar results, increasing gene expression in pathways associated with neuritogenesis and plasticity (Rampon жана башкалар., 2000).

Like exercise reward, as a general trend the plasticity induced by EE appears to reduce the sensitivity to drugs of abuse and may impart a “protective phenotype” against drug taking (Stairs and Bardo, 2009; Thiel жана башкалар, 2009; Solinas жана башкалар, 2010; Thiel жана башкалар, 2011). Compared to animals in impoverished conditions, EE produced a rightward shift in the dose-response curve of locomotor activation by morphine, as well as attenuated morphine- and amphetamine-induced locomotor sensitization (Bardo жана башкалар, 1995; Bardo жана башкалар, 1997). A similar trend was observed following psychostimulant treatment, where EE attenuated the locomotor activating and sensitization effects of nicotine and reduced cocaine self-administration and seeking behavior (although EE increased cocaine CPP) (Green жана башкалар, 2003; Green жана башкалар, 2010). Interestingly, EE did not lead to differences in NAc or striatal DA synthesis or mu opiate receptor binding in several mesocorticolimbic areas investigated (Bardo жана башкалар., 1997), although Segovia and colleagues did find an increase in basal and K+-stimulated NAc DA following EE (Segovia жана башкалар., 2010). In the PFC (but not NAc or striatum), EE rats were found to have reduced dopamine transport capacity (Zhu жана башкалар, 2005). This resulting increase in prefrontal DA signaling could impact mesolimbic activity, impulsivity, and drug self-administration (Deutch, 1992; Olsen and Duvauchelle, 2001, 2006; Everitt жана башкалар., 2008; Del Arco and Mora, 2009). More recent work has identified attenuated activity of CREB and reduced BDNF in the NAc following 30 days EE compared to impoverished rats (Green жана башкалар., 2010), although NAc BDNF levels were similar between EE and control rats following one year of housing (Segovia жана башкалар., 2010). EE also affects transcriptional activity induced by drugs of abuse. Induction of the immediate early gene zif268 in the NAc by cocaine is reduced, as is cocaine-induced expression of delta FosB in the striatum (although EE itself was found to elevate striatal delta FosB) (Solinas жана башкалар, 2009). This “protective” effect is not just seen in the field of addiction. The degree of plasticity induced by EE is so great that it is continuing to be studied in terms of protecting and improving recovery from several neurological diseases (van Praag жана башкалар., 2000a; Spires and Hannan, 2005; Nithianantharajah and Hannan, 2006; Laviola жана башкалар, 2008; Lonetti жана башкалар, 2010), and a recent report even found a hypothalamic-dependent increase in cancer remission when animals were housed in EE (Cao жана башкалар, 2010). As discussed in regards to exercise, conclusions regarding the effects of EE on drug self-administration should be made while considering the potential anti-depressive effects of enriched housing. Like exercise, EE has been demonstrated to increase hippocampal neurogenesis (van Praag жана башкалар., 2000b) and reduce the depressive-like effects of stress in rodents (Laviola жана башкалар., 2008).

Баруу:

6. талкулоо

In some people, there is a transition from “normal” to compulsive engagement in natural rewards (such as food or sex), a condition that some have termed behavioral or non-drug addictions (Holden, 2001; Grant жана башкалар., 2006a). As research in non-drug addiction progresses, knowledge gained from the fields of drug addiction, motivation, and obsessive-compulsive disorder will contribute to the development of therapeutic strategies for non-drug addictions. There is emerging clinical evidence that pharmacotherapies used to treat drug addiction may be a successful approach to treating non-drug addictions. For example, naltrexone, nalmefine, N-acetyl-cysteine, and modafanil have all been reported to reduce craving in pathological gamblers (Kim жана башкалар, 2001; Grant жана башкалар, 2006b; Leung and Cottler, 2009). Opiate antagonists have also shown promise in small studies in the treatment of compulsive sexual behavior (Grant and Kim, 2001), and topirimate has shown success in reducing binge episodes and weight in obese patients with binge eating disorder (McElroy жана башкалар, 2007). The success of these treatments for non-drug addictions further suggests that there are common neural substrates between drug and non-drug addictions.

Animal models of motivated and compulsive behavior will also help provide insight into neural mechanisms underlying non-drug addictions (Potenza, 2009; Winstanley жана башкалар, 2010). Some types of non-drug addictions are more easily modeled in rodents than others. For example, paradigms using access to highly palatable foods have provided an excellent framework for the study of the transition to compulsive or excessive food intake. Rodent models using access to high fat, high sugar, or “cafeteria style” diet result in increased caloric intake and elevated weight gain, principal components of human obesity (Rothwell and Stock, 1979, 1984; Lin жана башкалар, 2000). These treatments can increase future motivation for food reward (Wojnicki жана башкалар, 2006) and lead to alterations in neural plasticity in the mesolimbic dopamine system (Hoebel жана башкалар, 2009). Food self-administration models have further found that food-associated cues and stressors can lead to relapse to food seeking (Ward жана башкалар., 2007; Grimm жана башкалар, 2008; Nair жана башкалар., 2009b), a phenomenon also reported for human dieters (Drewnowski, 1997; Berthoud, 2004). Thus, these types of models have high construct validity and may result in neuroadaptations that give us insight into human conditions such as compulsive food intake or relapse to excessive eating habits following a beneficial change in diet.

Another area of recent progress has been in the development of rodent models of gambling and risky choice (van den Bos жана башкалар, 2006; Rivalan жана башкалар, 2009; St Onge and Floresco, 2009; Zeeb жана башкалар., 2009; Jentsch жана башкалар, 2010). Studies have demonstrated that rats are capable of performing the Iowa gambling task (IGT) (Rivalan жана башкалар., 2009; Zeeb жана башкалар., 2009) and a slot machine task (Winstanley жана башкалар, 2011). One study found that rats that performed suboptimally on the IGT had higher reward sensitivity and higher risk taking (Rivalan жана башкалар., 2009), similar to traits that have been associated with pathological gambling and drug addiction in human patients (Cloninger, 1987; Zuckerman, 1991; Cunningham-Williams жана башкалар, 2005; Potenza, 2008). Using rodent models, studies are also focusing on neural mechanisms underlying the “drive to gamble” and the development of pathological gambling which may provide insight into development of pharmacotherapies for pathological gambling (Winstanley, 2011; Winstanley жана башкалар., 2011).

Mechanistic studies using sensory stimuli as a reinforcer have found overlap of the molecular mechanisms that modulate self-administration of sensory reinforcers and drugs of abuse (Olsen and Winder, 2009; Olsen жана башкалар., 2010). While research in this field is in its infancy, these and future experiments may give insight into potential therapeutic strategies for the treatment of compulsive internet use or video gaming.

While these and other advancements in behavioral models are beginning to give us potential insight into processes underlying non-drug addictions, there are several challenges and limitations when attempting to model such behavior. One limitation is that in most models, there is no significant consequence of maladaptive decision-making or excessive engagement in the behaviors. For example, rodent gambling tasks use smaller rewards or increased delay between rewards in response to poor decisions, but the animal doesn’t risk losing his home after a losing streak. Another limitation is that excessive engagement in behaviors such as food or drug self-administration in laboratory conditions may be a consequence of animals not having access to other non-drug rewards (Ahmed, 2005). This unique situation has been proposed to model risk-prone individuals in human populations (Ahmed, 2005), although it still represents a caveat for these types of studies.

Continued study of excessive, compulsive, or maladaptive performance in eating, gambling, and other non-drug behaviors will be key in advancing our understanding of non-drug addictions. Results from preclinical studies using these methods combined with research in human populations will promote “crossover” pharmacotherapies that could benefit both drug and non-drug addictions (Grant жана башкалар., 2006a; Potenza, 2009; Frascella жана башкалар., 2010).

6.1 калган суроолор

One question that remains is whether the same populations of neurons are activated by drug and natural rewards. While there is ample evidence that there is overlap in the brain regions affected by natural rewards and drugs of abuse (Garavan жана башкалар, 2000; Karama жана башкалар, 2002; Childress жана башкалар, 2008), there is conflicting data regarding overlap in neural populations that are affected by natural rewards and drugs. Single unit recordings from rat and non-human primate ventral striatum indicate that different neural populations are engaged during self-administration of natural rewards (food, water, and sucrose) vs. cocaine or ethanol, although there was a high degree of overlap between the different natural rewards used in these studies (Bowman жана башкалар, 1996; Carelli жана башкалар, 2000; Carelli, 2002; Robinson and Carelli, 2008). There is also evidence that drugs of different classes engage distinct neural ensembles within the mesocorticolimbic system. Single unit recordings from the medial PFC and NAc of rats self-administering cocaine or heroin revealed that different populations of neurons were differentially engaged during both the anticipatory and post-infusion periods (Chang жана башкалар, 1998). The distinction between natural and drug reward may not be so absolute, however, as there is also evidence for the contrary. Following timed exposure to methamphetamine and sexual experience, there was significant coincidence of neurons activated by these two rewards in the NAc, anterior cingulate cortex, and basolateral amygdala (Frohmader жана башкалар., 2010). Thus, recruitment of neural populations by particular drugs of abuse may overlap with that of some natural rewards, but not others. Future studies using more comprehensive batteries of natural and drug rewards will be needed to address this issue.

Another question that arises is to what degree the study of natural reward processing can help us understand drug and non-drug addiction. Recent evidence suggests that exposure to some non-drug rewards can impart “protection” from drug rewards. For example, sugar and saccharin can reduce self-administration of cocaine and heroin (Carroll жана башкалар., 1989; Lenoir and Ahmed, 2008), and these natural reinforcers have been demonstrated to outcompete cocaine in choice self-administration in a large majority of rats (Lenoir жана башкалар., 2007; Cantin жана башкалар., 2010). In a retrospective analysis of animals across studies, Cantin жана башкалар. reported that only ~9% of rats prefer cocaine over saccharin. An interesting possibility is that this small proportion of animals represents a population that is susceptible to “addiction”. Studies using cocaine self-administration have attempted to identify “addicted” rats using criteria modified to model DSM-IV criteria for drug dependence (Deroche-Gamonet жана башкалар., 2004; Belin жана башкалар, 2009; Kasanetz жана башкалар, 2010). These studies have found that approximately ~17–20% of animals self-administering cocaine meet all three criteria, while estimates for rates of cocaine dependence in humans previously exposed to the drug range from ~5–15% (Anthony жана башкалар, 1994; O’Brien and Anthony, 2005). Thus, in the majority of animals sugar and saccharin appear to be more reinforcing than cocaine. A question of great interest is whether the minority of animals that find the drug reinforcer to be preferred represent a “vulnerable” population that is more relevant to the study of addiction. Thus, comparing individual animals’ preferences for drug versus natural rewards may yield insight into vulnerability factors associated with drug addiction.

A final question is whether the pursuit of natural rewards can help prevent or treat drug addiction. Environmental enrichment has been proposed as both a preventative and a treatment measure for drug addiction based on preclinical studies with several drugs of abuse (Bardo жана башкалар, 2001; Deehan жана башкалар, 2007; Solinas жана башкалар, 2008; Solinas жана башкалар., 2010). Studies of human inmates suggest that environmental enrichment through the use of “therapeutic communities” is in fact an effective treatment option both for reducing future crime and substance abuse (Inciardi жана башкалар, 2001; Butzin жана башкалар, 2005). These results are promising and suggest that environmental enrichment could potentially improve neuroadaptations associated with chronic drug use. Similar to environmental enrichment, studies have found that exercise reduces self-administration and relapse to drugs of abuse (Cosgrove жана башкалар., 2002; Zlebnik жана башкалар., 2010). There is also some evidence that these preclinical findings translate to human populations, as exercise reduces withdrawal symptoms and relapse in abstinent smokers (Daniel жана башкалар, 2006; Prochaska жана башкалар, 2008), and one drug recovery program has seen success in participants that train for and compete in a marathon as part of the program (Butler, 2005).

Баруу:

7. Корутунду

There are many parallels between non-drug addictions and drug addictions, including craving, impaired control over the behavior, tolerance, withdrawal, and high rates of relapse (Marks, 1990; Lejoyeux et al., 2000; National Institute on Drug Abuse (NIDA) et al., 2002; Potenza, 2006). As I have reviewed, there is a glut of evidence that natural rewards are capable of inducing plasticity in addiction-related circuitry. This should not come as a surprise, as 1) drugs of abuse exert actions within the brain that are similar to, albeit more pronounced than natural rewards (Kelley and Berridge, 2002), and 2) learned associations between things such as food or sexual opportunities and the conditions which maximize availability is beneficial from a survival standpoint and is a natural function of the brain (Alcock, 2005). In some individuals, this plasticity may contribute to a state of compulsive engagement in behaviors that resembles drug addiction. Extensive data suggests that eating, shopping, gambling, playing video games, and spending time on the internet are behaviors that can develop into compulsive behaviors that are continued despite devastating consequences (Young, 1998; Tejeiro Salguero and Moran, 2002; Davis and Carter, 2009; Garcia and Thibaut, 2010; Lejoyeux and Weinstein, 2010). As with drug addiction, there is a transition period from moderate to compulsive use (Grant жана башкалар., 2006a), although it is difficult to draw a line between “normal” and pathological pursuit of reward. One potential approach to make this distinction is to test patients using DSM criteria for substance dependence. Using this approach, reports have been made that these DSM criteria can be met when applied to patients that compulsively engage in sexual activity (Goodman, 1992), gambling (Potenza, 2006), internet usage (Griffiths, 1998), and eating (Ifland жана башкалар, 2009). Taken with the fact that the DSM-5 is expected to include categories of moderate and severe within “addiction and related disorders” (American Psychiatric Association, 2010), it would perhaps serve addiction researchers and clinicians well to consider addiction as a spectrum disorder. In other fields, this type of nomenclature has helped to raise awareness that disorders such as autism and fetal alcoholism have numerous levels of severity. In the case of addiction (drug or non-drug), identification of symptoms even below the threshold of “moderate” may help identify at-risk individuals and allow for more effective interventions. Future studies will continue to reveal insights into how the pursuit of natural rewards can become compulsive in some individuals and how best to treat non-drug addictions.

стол 1

Пластикалык Жыйынтык дарылар же жаратылыш Reinforcers төмөнкүдөй таасир белгилешкен.

Reinforcer Type
OpiatesПсихостимуляторлорHigh Fat/High Sugar FoodжынысExercise/EE/Sensory Reinforcementшилтемелер
Behavioral Plasticity
 Escalation of intake(Colantuoni жана башкалар., 2001; Koob and Kreek, 2007; Clark жана башкалар, 2010)
 Withdrawal effects(Aghajanian, 1978; Christie and Chesher, 1982; Markou and Koob, 1991; Colantuoni жана башкалар., 2002; Teegarden and Bale, 2007)
 Cross-sensitization with psychostimulantsN / A(attenuated)(Vezina жана башкалар., 1989; Bardo жана башкалар., 1995; Fiorino and Phillips, 1999; Avena and Hoebel, 2003b, a; Green жана башкалар., 2003; Gosnell, 2005; Pitchers жана башкалар., 2010a)
 Psychostimulant self-administration↑ or NC↓ (w/ concurrent availability)↓ or NC(Carroll жана башкалар., 1989; Lett, 1989; Bardo жана башкалар., 2001; Covington and Miczek, 2001; Cosgrove жана башкалар., 2002; He and Grasing, 2004; Lenoir жана башкалар., 2007; Smith жана башкалар., 2008; Green жана башкалар., 2010)
 Psychostimulant conditioned place preference↓ (exercise) ↑ (environmental enrichment)(Shippenberg and Heidbreder, 1995; Davis жана башкалар., 2008; Green жана башкалар., 2010; Pitchers жана башкалар., 2010a; Thanos жана башкалар., 2010)
 Reinstatement of drug-seeking behavior(Stewart, 2000; Lynch жана башкалар., 2010; Zlebnik жана башкалар., 2010)
Нейрохимиялык пластикалык
 Sensitized NAc dopamine responseЖокNo (intermittent sugar)(Robinson and Becker, 1982; Kohlert and Meisel, 1999; Leri жана башкалар., 2003; Avena жана башкалар., 2008)
 Altered striatal dopamine signaling↓D2, ↑D3↑D1, ↓D2, ↑D3↑D1, ↓D2, ↑D3, reduced DA turnover↑ D2(Packard and Knowlton, 2002; Porrino жана башкалар., 2004a; Porrino жана башкалар., 2004b; Davis жана башкалар., 2008)
 Altered striatal opioid signalingNC enkephalin ↑ or NC μ receptors ↑ dynorphin↑ μ receptors ↑ κ receptors ↑ dynorphin↑ μ receptors (also in offspring) ↓ enkephalin ↑ enkephalin in offspring↑ μ receptorsNC μ receptors ↑ dynorphin(Hammer, 1989; Unterwald жана башкалар., 1994b; Bardo жана башкалар., 1997; Steiner and Gerfen, 1998; Turchan жана башкалар, 1999; Weme жана башкалар., 2000; Colantuoni жана башкалар., 2001; Kelley жана башкалар., 2003; Spangler жана башкалар., 2004; Bradley жана башкалар., 2005; Contet жана башкалар., 2008; Solecki жана башкалар, 2009; Vucetic жана башкалар., 2010; Wee and Koob, 2010)
 Elevated amygdala CRF during withdrawal(Maj жана башкалар, 2003; Teegarden and Bale, 2007; Koob and Le Moal, 2008)
 Reduced NAc CREB phosphorylation✓ (withdrawal)(McDaid жана башкалар., 2006a; McDaid жана башкалар., 2006b; Teegarden and Bale, 2007; Wallace жана башкалар., 2008; Green жана башкалар., 2010)
 Elevated NAc delta FosB(Nestler жана башкалар., 1999; Werme жана башкалар., 2002; Wallace жана башкалар., 2008; Solinas жана башкалар., 2009; Pitchers жана башкалар., 2010b)
Mesocorticolimbic Synaptic Plasticity
 Altered VTA AMPA/NMDA ratio during withdrawal(Saal жана башкалар., 2003; Chen жана башкалар., 2008a; Chen жана башкалар, 2010)
 NAc dendrite number(Fiorino and Kolb, 2003; Robinson and Kolb, 2004; Meisel and Mullins, 2006; Pitchers жана башкалар., 2010a)
 NAc spine densityNC (operant sucrose pellets, limited access)(Fiorino and Kolb, 2003; Robinson and Kolb, 2004; Crombag жана башкалар, 2005; Meisel and Mullins, 2006; Pitchers жана башкалар., 2010a)

CREB: cyclic AMP response element binding protein, CRF: corticotropin releasing factor, NAc: nucleus accumbens, N/A: not applicable, NC: no change, VTA: ventral tegmental area.

Баруу:

Acknowledgments

Каржылык колдоо NIH грант DA026994 менен камсыз болгон. Мен Келли Конрад ыраазычылык билдирип кетким келет, Ph.D. жана Tiffany Уиллис, Ph.D. Бул кол жазманын мурдагы боюнча иштиктүү пикирлери.

Баруу:

Шилтемелер

Publisher's Disclaimer: Бул жарыялоо үчүн кабыл алынган бир Unedited кол жазманын бир PDF сөп. Биздин кардарлар үчүн кызмат катары кол жазмасынын бул алгачкы нускасын менен камсыз кылат. кол жазма анын акыркы citable түрүндө жарыяланат чейин натыйжасында далилдөө copyediting, калыптоо жана экспертизадан өтүп калат. өндүрүштү каталар мазмунуна кандай таасир этиши мүмкүн болгон ачылган мүмкүн ичинде экенин эске алууну суранабыз, жана журналына тиешелүү бардык юридикалык тартуу байланыштуу.

Баруу:

шилтемелер

  • (APA) APA DSM-5 Proposed Revisions Include New Category of Addiction and Related Disorders. 2010 [Press Release.
  • Aghajanian GK. Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature. 1978;276:186–188. [PubMed] [Google Окумуштуу]
  • Ahmed SH. Imbalance between drug and non-drug reward availability: a major risk factor for addiction. Eur J Pharmacol. 2005;526: 9-20.  [Google Окумуштуу]
  • Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change in hedonic set point. Илим. 1998;282:298–300. [PubMed] [Google Окумуштуу]
  • Aiken CB. Pramipexole in psychiatry: a systematic review of the literature. J Clin психиатрия. 2007;68:1230–1236. [PubMed] [Google Окумуштуу]
  • Alburges ME, Narang N, Wamsley JK. Alterations in the dopaminergic receptor system after chronic administration of cocaine. Synapse. 1993;14:314–323. [PubMed] [Google Окумуштуу]
  • Alcock J. Animal Behavior: an evolutionary approach. Sinauer Associates; Sunderland, Mass: 2005. [Google Окумуштуу]
  • American Psychiatric Association A DSM-5 Proposed Revisions Include New Category of Addiction and Related Disorders. 2010 [Press Release]. .
  • Antelman SM, Eichler AJ, Black CA, Kocan D. Interchangeability of stress and amphetamine in sensitization. Илим. 1980;207:329–331. [PubMed] [Google Окумуштуу]
  • Anthony JC, Warner LA, Kessler RC. Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey. Эксперименталдык жана клиникалык Psychopharmacology. 1994;2: 244-268. [Google Окумуштуу]
  • Asahina S, Asano K, Horikawa H, Hisamitsu T, Sato M. Enhancement of beta-endorphin levels in rat hypothalamus by exercise. Japanese Journal of Physical Fitness and Sports Medicine. 2003;5: 159-166. [Google Окумуштуу]
  • Aston-Jones G, Harris GC. Brain substrates for increased drug seeking during protracted withdrawal. Neuropharmacology. 2004;47(Suppl 1):167–179. [PubMed] [Google Окумуштуу]
  • Avena Н.М., Hoebel BG. Amphetamine-курчутулат чычкандар кант жасалма Hyperactivity көрсөткөн (кайчылаш-маа-) жана кант hyperphagia. Pharmacol BIOCHEM Behav. 2003a;74:635–639. [PubMed] [Google Окумуштуу]
  • Avena Н.М., Hoebel BG. А диета көмөк кант көз карандылыгы amphetamine төмөн дозасы үчүн жүрүш-кайчылаш-маа- себеп болот. Neuroscience. 2003b;122:17–20. [PubMed] [Google Окумуштуу]
  • Avena Н.М., Long KA, Hoebel BG. Шекер көз каранды чычкандар Кемедегилер кантка жооп жакшыртылган көрсөтүп: кант ажыратуу күчүнө далили. Physiol Behav. 2005;84:359–362. [PubMed] [Google Окумуштуу]
  • Avena Н.М., Рада P, Hoebel BG. үзгүлтүктүү, ашыкча шекер астындагы сууларды алуунун жүрүш-туруш жана нейрохимиялык таасирлери: кант көз карандылыкты далили. Neurosci Biobehav Аян 2008;32: 20-39. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Balleine BW, Dickinson A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology. 1998;37:407–419. [PubMed] [Google Окумуштуу]
  • Bardo MT, Bowling SL, Rowlett JK, Manderscheid P, Buxton ST, Dwoskin LP. Environmental enrichment attenuates locomotor sensitization, but not in vitro dopamine release, induced by amphetamine. Pharmacol BIOCHEM Behav. 1995;51:397–405. [PubMed] [Google Окумуштуу]
  • Bardo MT, Dwoskin LP. Biological connection between novelty- and drug-seeking motivational systems. Nebr Symp Motiv. 2004;50:127–158. [PubMed] [Google Окумуштуу]
  • Bardo MT, Klebaur JE, Valone JM, Deaton C. Environmental enrichment decreases intravenous self-administration of amphetamine in female and male rats. Psychopharmacology (Берл) 2001;155:278–284. [PubMed] [Google Окумуштуу]
  • Bardo MT, Robinet PM, Hammer RF., Jr. Effect of differential rearing environments on morphine-induced behaviors, opioid receptors and dopamine synthesis. Neuropharmacology. 1997;36:251–259. [PubMed] [Google Окумуштуу]
  • Beach FA, Jordan L. Effects of sexual reinforcement upon the performance of male rats in a straight runway. J Comp Physiol Psychol. 1956;49:105–110. [PubMed] [Google Окумуштуу]
  • Bechara A. чечим кабыл алуу, ойлонбой башкаруу жана күчүбүз жоготуу дары каршы туруу үчүн: а neurocognitive көз караш. Nat Neurosci. 2005;8:1458–1463. [PubMed] [Google Окумуштуу]
  • Belin D, Balado E, Piazza PV, Deroche-Gamonet V. Pattern of intake and drug craving predict the development of cocaine addiction-like behavior in rats. Biol психиатрия. 2009;65:863–868. [PubMed] [Google Окумуштуу]
  • Belke TW, Dunlop L. Effects of high doses of naltrexone on running and responding for the opportunity to run in rats: A test of the opiate hypothesis. Psychol Rec. 1998;48: 675-684. [Google Окумуштуу]
  • Belke TW, Heyman GM. A Matching Law Analysis of the Reinforcing Efficacy of Wheel Running in Rats. Anim Learn Behav. 1994;22: 267-274. [Google Окумуштуу]
  • Bello NT, Lucas LR, Hajnal A. Кайталап сахароза мүмкүндүк таасир тинейджер D2 сезгич striatum менен жыштыгы. Neuroreport. 2002;13: 1575-1578. [PMC акысыз макала] [Google Окумуштуу]
  • Bennett EL, Rosenzweig MR, Diamond MC. Rat brain: effects of environmental enrichment on wet and dry weights. Илим. 1969;163:825–826. [PubMed] [Google Окумуштуу]
  • Berthoud HR. Mind versus metabolism in the control of food intake and energy balance. Physiol Behav. 2004;81:781–793. [PubMed] [Google Окумуштуу]
  • Besheer J, Jensen HC, Bevins RA. Dopamine antagonism in a novel-object recognition and a novel-object place conditioning preparation with rats. Behav Brain Жен. 1999;103:35–44. [PubMed] [Google Окумуштуу]
  • Bevins RA, Bardo MT. Conditioned increase in place preference by access to novel objects: antagonism by MK-801. Behav Brain Жен. 1999;99:53–60. [PubMed] [Google Окумуштуу]
  • Bevins RA, Besheer J. Novelty reward as a measure of anhedonia. Neurosci Biobehav Аян 2005;29:707–714. [PubMed] [Google Окумуштуу]
  • Bjornebekk A, Mathe AA, Brene S. Running has differential effects on NPY, opiates, and cell proliferation in an animal model of depression and controls. Neuropsychopharmacology. 2006;31:256–264. [PubMed] [Google Окумуштуу]
  • Black DW. Compulsive buying disorder: a review of the evidence. Cns Spectrums. 2007;12:124–132. [PubMed] [Google Окумуштуу]
  • Borgland SL, Malenka RC, Bonci A. Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci. 2004;24:7482–7490. [PubMed] [Google Окумуштуу]
  • Bowman EM, Aigner TG, Richmond BJ. Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. J Neurophysiol. 1996;75:1061–1073. [PubMed] [Google Окумуштуу]
  • Брэдли KC, Boulware MB, Йианг H, Doerge RW, Meisel RL, Mermelstein PG. сексуалдык тажрыйбасы төмөнкү ядро ​​accumbens жана striatum ичинде ген сөз өзгөрүүлөр. Гендер Brain Behav. 2005;4:31–44. [PubMed] [Google Окумуштуу]
  • Брайтер HC, Арун I, Канеман D, Дэйл A, Shizgal P. акча пайдалардын жана чыгымдардын күтүп жана тажрыйбасына нейрон жооп Белек сүрөт. Нейрон. 2001;30:619–639. [PubMed] [Google Окумуштуу]
  • Bruijnzeel AW. kappa-Opioid receptor signaling and brain reward function. Brain Рез Аян 2009;62: 127-146. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Butler SL. Trading Drink and Drugs for Sweat and Blisters. The New York Times; New York: 2005. [Google Окумуштуу]
  • Butzin CA, Martin SS, Inciardi JA. Treatment during transition from prison to community and subsequent illicit drug use. J челпек Abuse дарылаъыз. 2005;28:351–358. [PubMed] [Google Окумуштуу]
  • Caggiula AR, Hoebel BG. Арткы гипоталамустагы "Копуляция-сыйлык сайты". Илим. 1966;153:1284–1285. [PubMed] [Google Окумуштуу]
  • Cain ME, Green TA, Bardo MT. Environmental enrichment decreases responding for visual novelty. Жүрүш-туруш Иштеп. 2006;73: 360-366. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Cain ME, Saucier DA, Bardo MT. Novelty seeking and drug use: contribution of an animal model. Experimental & Clinical Psychopharmacology. 2005;13:367–375. [PubMed] [Google Окумуштуу]
  • Cantin L, Lenoir M, Augier E, Vanhille N, Dubreucq S, Serre F, et al. Cocaine is low on the value ladder of rats: possible evidence for resilience to addiction. PLoS One. 2010;5: E11592. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Cao L, Liu X, Lin EJ, Wang C, Choi EY, Riban V, et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Клетка. 2010;142: 52-64. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Carelli RM. Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs. ‘natural’ reinforcement. Physiol Behav. 2002;76:379–387. [PubMed] [Google Окумуштуу]
  • Клейн RM, поток SG, Crumling AJ. Ядродогу нейрон чынжырларын бөлүп Evidence "табигый" (суу жана тамак-аш) сооп ордуна коддоо кокаин accumbens. J Neurosci. 2000;20:4255–4266. [PubMed] [Google Окумуштуу]
  • Carlezon WA, Jr., Thomas MJ. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology. 2009;56(Адамдардын тобу 1): 122-132. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Carroll ME, Lac ST, Nygaard SL. A concurrently available nondrug reinforcer prevents the acquisition or decreases the maintenance of cocaine-reinforced behavior. Psychopharmacology (Берл) 1989;97:23–29. [PubMed] [Google Окумуштуу]
  • Кассенс Г, актер С, Клинг М, Шилдкраут Дж. Амфетаминди алып салуу: интракраниалдык бекемдөө босогосуна таасири. Psychopharmacology (Берл) 1981;73:318–322. [PubMed] [Google Окумуштуу]
  • Chang JY, Janak PH, Woodward DJ. Comparison of mesocorticolimbic neuronal responses during cocaine and heroin self-administration in freely moving rats. J Neurosci. 1998;18:3098–3115. [PubMed] [Google Окумуштуу]
  • Chen Б.Т., Бауэрс MS, Мартин M, Hopf FW, Guillory AM, Клейн RM, .Удаалаш. Кокаин, бирок табигый сыйлык өз алдынча башкаруу да жөн кокаин мунун VTA туруктуу LTP өндүрөт. Нейрон. 2008a;59: 288-297. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Chen BT, Hopf FW, Bonci A. Synaptic plasticity in the mesolimbic system: therapeutic implications for substance abuse. Ann NY Акад Sci. 2010;1187: 129-139. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Chen HI, Kuo YM, Liao CH, Jen CJ, Huang AM, Cherng CG, et al. Long-term compulsive exercise reduces the rewarding efficacy of 3,4-methylenedioxymethamphetamine. Behav Brain Жен. 2008b;187:185–189. [PubMed] [Google Окумуштуу]
  • Childress AR, Ehrman RN, Wang Z, Li Y, Sciortino N, Hakun J, et al. Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLoS One. 2008;3: E1506. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Chiodo LA, Antelman SM, Caggiula AR, Lineberry CG. Sensory stimuli alter the discharge rate of dopamine (DA) neurons: evidence for two functional types of DA cells in the substantia nigra. Brain Рез. 1980;189:544–549. [PubMed] [Google Окумуштуу]
  • Christie MJ, Chesher GB. Physical dependence on physiologically released endogenous opiates. Life Sci. 1982;30:1173–1177. [PubMed] [Google Окумуштуу]
  • Clark PJ, Kohman RA, Miller DS, Bhattacharya TK, Haferkamp EH, Rhodes JS. Adult hippocampal neurogenesis and c-Fos induction during escalation of voluntary wheel running in C57BL/6J mice. Behav Brain Жен. 2010;213: 246-252. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Cloninger CR. Neurogenetic adaptive mechanisms in alcoholism. Илим. 1987;236:410–416. [PubMed] [Google Окумуштуу]
  • Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A, et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Рез. 2002;10:478–488. [PubMed] [Google Окумуштуу]
  • Colantuoni C, Schwenker J, McCarthy J, Rada P, Ladenheim B, Cadet JL, et al. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport. 2001;12:3549–3552. [PubMed] [Google Окумуштуу]
  • Конрад КЛ, Ford K, Marinelli M МЕНИ карышкыр. Тинейджер кабылдагыч сөз айкашы жана бөлүштүрүү динамикалуу кокаин өзүн-өзү башкаруудан чыгып кеткенден кийин токтоду ядросу accumbens өзгөрүп. Neuroscience. 2010;169: 182-194. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Contet C, Filliol D, Matifas A, Kieffer BL. Morphine-induced analgesic tolerance, locomotor sensitization and physical dependence do not require modification of mu opioid receptor, cdk5 and adenylate cyclase activity. Neuropharmacology. 2008;54:475–486. [PubMed] [Google Окумуштуу]
  • Corsica JA, Pelchat ML. Food addiction: true or false? Curr Opin Gastroenterol. 2010;26:165–169. [PubMed] [Google Окумуштуу]
  • Cosgrove KP, Hunter RG, Carroll ME. Wheel-running attenuates intravenous cocaine self-administration in rats: sex differences. Pharmacol BIOCHEM Behav. 2002;73:663–671. [PubMed] [Google Окумуштуу]
  • Cottone P, Сабино V, Steardo L, Zorrilla EP. Наркотикалык көз каранды алдын ала терс айырма жана ичимдик сыяктуу жогорку артык тамак мүмкүнчүлүгү чектелген келемиштер менен тамактануу. Neuropsychopharmacology. 2008;33:524–535. [PubMed] [Google Окумуштуу]
  • Covington HE, 3rd, Miczek KA. Repeated social-defeat stress, cocaine or morphine. Effects on behavioral sensitization and intravenous cocaine self-administration “binges” Psychopharmacology (Берл) 2001;158:388–398. [PubMed] [Google Окумуштуу]
  • Covington HE, 3rd, Miczek KA. Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacology (Берл) 2005;183:331–340. [PubMed] [Google Окумуштуу]
  • Crawford LL, Holloway KS, Domjan M. The nature of sexual reinforcement. J Exp анал Behav. 1993;60: 55-66. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Crombag HS, Gorny G, Li Y, Kolb B, Robinson TE. Opposite effects of amphetamine self-administration experience on dendritic spines in the medial and orbital prefrontal cortex. Cereb Адлер. 2005;15:341–348. [PubMed] [Google Окумуштуу]
  • Cunningham-Williams RM, Grucza RA, Cottler LB, Womack SB, Books SJ, Przybeck TR, et al. Prevalence and predictors of pathological gambling: results from the St. Louis personality, health and lifestyle (SLPHL) study. J Psychiatr Рез. 2005;39: 377-390. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Daniel JZ, Cropley M, Fife-Schaw C. The effect of exercise in reducing desire to smoke and cigarette withdrawal symptoms is not caused by distraction. Адат. 2006;101:1187–1192. [PubMed] [Google Окумуштуу]
  • Davis C, Carter JC. Compulsive overeating as an addiction disorder. A review of theory and evidence. Абайла сулу кыз. 2009;53:1–8. [PubMed] [Google Окумуштуу]
  • Davis JF, Tracy AL, Schurdak JD, Tschop MH, Lipton JW, Clegg DJ, et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci. 2008;122: 1257-1263. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Deadwyler SA. Electrophysiological correlates of abused drugs: relation to natural rewards. Ann NY Акад Sci. 2010;1187:140–147. [PubMed] [Google Окумуштуу]
  • Deehan GA, Jr., Cain ME, Kiefer SW. Differential rearing conditions alter operant responding for ethanol in outbred rats. Ичкилик Clin Exp Рез. 2007;31:1692–1698. [PubMed] [Google Окумуштуу]
  • Del Arco A, Mora F. Neurotransmitters and prefrontal cortex-limbic system interactions: implications for plasticity and psychiatric disorders. J Нейрон Transm. 2009;116:941–952. [PubMed] [Google Окумуштуу]
  • Deroche-Gamonet V, Belin D, Piazza PV. Келемиштердин көз карандылык сыяктуу жүрүм-туруму үчүн далил. Илим. 2004;305:1014–1017. see comment. [PubMed] [Google Окумуштуу]
  • Deutch AY. The regulation of subcortical dopamine systems by the prefrontal cortex: interactions of central dopamine systems and the pathogenesis of schizophrenia. J Нейрон Transm тобу. 1992;36:61–89. [PubMed] [Google Окумуштуу]
  • Dommett E, Coizet V, Blaha CD, Martindale J, Lefebvre V, Walton N, et al. How visual stimuli activate dopaminergic neurons at short latency. Илим. 2005;307:1476–1479. [PubMed] [Google Окумуштуу]
  • Drewnowski A. Taste preferences and food intake. Annu Аян Nutr. 1997;17: 237-253.  [Google Окумуштуу]
  • Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol психиатрия. 1999;46:1181–1191. [PubMed] [Google Окумуштуу]
  • Ehringer MA, Hoft NR, Zunhammer M. Reduced alcohol consumption in mice with access to a running wheel. Ичимдик. 2009;43:443–452. [PubMed] [Google Окумуштуу]
  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A. Dramatic decreases in brain reward function during nicotine withdrawal. Nature. 1998;393:76–79. [PubMed] [Google Окумуштуу]
  • Ernst C, Olson AK, Pinel JP, Lam RW, Christie BR. Antidepressant effects of exercise: evidence for an adult-neurogenesis hypothesis? J психиатрия Neurosci. 2006;31: 84-92. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Ettenberg A, Camp CH. Haloperidol induces a partial reinforcement extinction effect in rats: implications for a dopamine involvement in food reward. Pharmacol BIOCHEM Behav. 1986;25:813–821. [PubMed] [Google Окумуштуу]
  • Evans AH, Pavese N, Lawrence AD, Tai YF, Appel S, Doder M, et al. Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Энн Neurol. 2006;59:852–858. [PubMed] [Google Окумуштуу]
  • Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Роббинс TW. Review. СПИДге чалдыгышын негизинде Neural механизмдери милдеттүү дары-издеп адаттарды жана азыраак иштеп чыгуу. Статс Транс R Soc Lond B Biol Sci. 2008;363: 3125-3135. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Everitt BJ, Dickinson A, Роббинс TW. жаман жүрүм-neuropsychological негиздери. Brain Рез Brain Рез Аян 2001;36:129–138. [PubMed] [Google Окумуштуу]
  • Everitt BJ, Fray P, Kostarczyk E, Taylor S, Stacey P. Studies of instrumental behavior with sexual reinforcement in male rats (Rattus norvegicus): I. Control by brief visual stimuli paired with a receptive female. J Comp Psychol. 1987;101:395–406. [PubMed] [Google Окумуштуу]
  • Fiorino DF, Kolb BS. Sexual experience leads to long-lasting morphological changes in male rat prefrontal cortex, parietal cortex, and nucleus accumbens neurons. Society for Neuroscience; New Orleans, LA: 2003. 2003 Abstract Viewer and Itinerary Planner Washington, DC. [Google Окумуштуу]
  • Fiorino DF, шилт AG. D-amphetamine-жасалма жүрүм-турумдук маа- кийин эркек келемиштер ядросу accumbens сексуалдык жүрүм-турум жана күчөтүлгөн тинейджер efflux көмөктөшөт. J Neurosci. 1999;19:456–463. [PubMed] [Google Окумуштуу]
  • Foley TE, Fleshner M. Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular Med. 2008;10:67–80. [PubMed] [Google Окумуштуу]
  • Frascella J, Potenza MN, Brown LL, Childress AR. Shared brain vulnerabilities open the way for nonsubstance addictions: carving addiction at a new joint? Ann NY Акад Sci. 2010;1187: 294-315. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Freed CR, Yamamoto BK. Regional brain dopamine metabolism: a marker for the speed, direction, and posture of moving animals. Илим. 1985;229:62–65. [PubMed] [Google Окумуштуу]
  • Frohmader KS, Wiskerke J, Wise RA, Lehman MN, Coolen LM. Methamphetamine acts on subpopulations of neurons regulating sexual behavior in male rats. Neuroscience. 2010;166: 771-784. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, et al. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. J психиатрия белем. 2000;157:1789–1798. [PubMed] [Google Окумуштуу]
  • Garcia FD, Thibaut F. Sexual Addictions. Am J Drug Ичкиликти кыянат. 2010 [PubMed] [Google Окумуштуу]
  • Girault JA, Valjent E, Caboche J, Herve D. ERK2: a logical AND gate critical for drug-induced plasticity? Current Opinion in Pharmacology. 2007;7:77–85. [PubMed] [Google Окумуштуу]
  • Gold SN, Heffner CL. Sexual addiction: many conceptions, minimal data. Clin Psychol Аян 1998;18:367–381. [PubMed] [Google Окумуштуу]
  • Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neurophysiol. 2002;88:2187–2195. [PubMed] [Google Окумуштуу]
  • Гудман А. Сексуалдык көз карандылык: дайындоо жана дарылоо. J Sex Никедеги Ther. 1992;18:303–314. [PubMed] [Google Окумуштуу]
  • Gosnell BA. Сахароза алуучунун кокаин тарабынан өндүрүлгөн жүрүш сезимталдыгын жакшыртат. Brain Рез. 2005;1031:194–201. [PubMed] [Google Окумуштуу]
  • Gosnell BA, Levine AS. Reward systems and food intake: role of opioids. Int J Obes (Lond) 2009;33(Suppl 2):S54–58. [PubMed] [Google Окумуштуу]
  • Грант се, Брюэр JA, Potenza MN. мал жана жүрүш-туруш адаттарынын къурау. Cns Spectrums. 2006a;11:924–930. [PubMed] [Google Окумуштуу]
  • Grant JE, Kim SW. A case of kleptomania and compulsive sexual behavior treated with naltrexone. Annals of Clinical Psychiatry. 2001;13:229–231. [PubMed] [Google Окумуштуу]
  • Grant JE, Potenza MN, Hollander E, Cunningham-Williams R, Nurminen T, Smits G, et al. Multicenter investigation of the opioid antagonist nalmefene in the treatment of pathological gambling. Америкалык психиатрия Journal. 2006b;163:303–312. see comment. [PubMed] [Google Окумуштуу]
  • Грант се, Potenza MN, Weinstein A, Gorelick да. жүрүм-турумдук көз карандылыкты киришүү. Am J Drug Ичкиликти кыянат. 2010;36: 233-241. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Graybiel AM. Адаттар, ырым-жырымдарды жана баалоо мээ. Annu Аян Neurosci. 2008;31:359–387. [PubMed] [Google Окумуштуу]
  • Green та, Alibhai IN, Roybal CN, Winstanley CA, Theobald DE, Birnbaum SG, .Удаалаш. Курчап турган чөйрөнү коргоо боюнча байытуу ядросу accumbens төмөн туруучу аденозин monophosphate жооп элементтин милдеттүү (CREB) иши арачылык кылган бир жүрүш-түспөлүм өндүрөт. Biol психиатрия. 2010;67: 28-35. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Green TA, Cain ME, Thompson M, Bardo MT. Environmental enrichment decreases nicotine-induced hyperactivity in rats. Psychopharmacology (Берл) 2003;170:235–241. [PubMed] [Google Окумуштуу]
  • Greenough WT, Chang FF. Plasticity of synapse structure and pattern in the cerebral cortex. In: Peters A, Jones EG, editors. Мээ кабыгында. vol. 7. Plenum; New York: 1989. pp. 391–440. [Google Окумуштуу]
  • Griffiths M. Internet addiction: Does it really exist? In: Gackenbach J, editor. Psychology and the Internet. Academic Press; San Diego, CA: 1998. pp. 61–75. [Google Окумуштуу]
  • Grimm JW, Fyall AM, Osincup DP. Incubation of sucrose craving: effects of reduced training and sucrose pre-loading. Physiol Behav. 2005;84: 73-79. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Grimm JW, үмүт Б.Т., акылман RA, Чазын Y. Neuroadaptation. чыгарылгандан кийин кокаин самаган укма. Nature. 2001;412: 141-142. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Grimm JW, Osincup D, Wells B, Manaois M, Fyall A, Buse C, et al. Environmental enrichment attenuates cue-induced reinstatement of sucrose seeking in rats. Behav Pharmacol. 2008;19: 777-785. [PMC акысыз макала] PubMed] [Google Окумуштуу]
  • Grueter BA, Gosnell HB, Olsen CM, Schramm-Sapyta NL, Nekrasova T, Landreth GE, et al. Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J Neurosci. 2006;26: 3210-3219. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20:2369–2382. [PubMed] [Google Окумуштуу]
  • Hammer RP., Jr. Cocaine alters opiate receptor binding in critical brain reward regions. Synapse. 1989;3:55–60. [PubMed] [Google Окумуштуу]
  • Hattori S, M Naoi, Nishino H. Striatal тинейджер орунда келемиштей чуркап учурунда жүгүртүү: эркинен ылдамдыгына байланышы. Brain Рез Bull. 1994;35:41–49. [PubMed] [Google Окумуштуу]
  • He S, Grasing K. Chronic opiate treatment enhances both cocaine-reinforced and cocaine-seeking behaviors following opiate withdrawal. Drug Ичкилик изде. 2004;75:215–221. [PubMed] [Google Окумуштуу]
  • Hebb DO. The effects of early experience on problem solving at maturity. Am Psychol. 1947;2: 306-307. [Google Окумуштуу]
  • Кишиге Л, Chakravarty S, Nestler Э.Дж., Meisel RL. ядросу accumbens жылы Delta FosB overexpression аял Сирия ГАГАРИНА сексуалдык сыйлык тат. Гендер Brain Behav. 2009;8: 442-449. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Herman JP, Stinus L, Le Moal M. Repeated stress increases locomotor response to amphetamine. Psychopharmacology (Берл) 1984;84:431–435. [PubMed] [Google Окумуштуу]
  • Hoebel BG, Avena NM, Bocarsly ME, Rada P. Natural Addiction: A Behavioral and Circuit Model Based on Sugar Addiction in Rats. Journal of Addiction Medicine. 2009;3: 33-41. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Hoebel BG, Hernandez L, Schwartz DH, Mark GP, Hunter GA. Microdialysis studies of brain norepinephrine, serotonin, and dopamine release during ingestive behavior: theoretical and clinical implications. Annals of the New York Academy of Sciences; New York: 1989. [PubMed] [Google Окумуштуу]
  • Hoeft F, Watson CL, Kesler SR, Bettinger KE, Reiss AL. Gender differences in the mesocorticolimbic system during computer game-play. J Psychiatr Рез. 2008;42:253–258. [PubMed] [Google Окумуштуу]
  • Hoffmann P, Thoren P, Ely D. Effect of voluntary exercise on open-field behavior and on aggression in the spontaneously hypertensive rat (SHR) Behav Нейрон Inc. 1987;47:346–355. [PubMed] [Google Окумуштуу]
  • Холден C. "жүрүм-турум", наркоманияны, алар бар эмне? Илим. 2001;294:980–982. [PubMed] [Google Окумуштуу]
  • Horvitz JC, Stewart T, Jacobs BL. Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Рез. 1997;759:251–258. [PubMed] [Google Окумуштуу]
  • Hosseini M, Alaei HA, Naderi A, Sharifi MR, Zahed R. Treadmill exercise reduces self-administration of morphine in male rats. Pathophysiology. 2009;16:3–7. [PubMed] [Google Окумуштуу]
  • Hudson JI, Hiripi E, Pope HG, Jr., Kessler RC. The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol психиатрия. 2007;61: 348-358. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Химэн SE, Кабуки RC, Nestler EJ. көз карандылыкты Neural механизмдери: сыйлык менен байланышкан билим жана эс ролу. Нейро жылдык Review. 2006;29:565–598. [PubMed] [Google Окумуштуу]
  • Ifland JR, Preuss HG, Marcus MT, Rourke KM, Taylor WC, Burau K, et al. Refined food addiction: a classic substance use disorder. Med гипОтезалар. 2009;72:518–526. [PubMed] [Google Окумуштуу]
  • Inciardi JA, Martin SS, Surratt HS. Therapeutic communities in prisons and work release: Effective modalities for drug-involved offenders. In: Rawlings B, Yates R, editors. Therapeutic communities for the treatment of drug users. Jessica Kingsley; London: 2001. pp. 241–256. [Google Окумуштуу]
  • Джеймс В. Principles of Psychology. H. Holt and Company; New York: 1890. [Google Окумуштуу]
  • Janal MN, Colt EW, Clark WC, Glusman M. Pain sensitivity, mood and plasma endocrine levels in man following long-distance running: effects of naloxone. Pain. 1984;19:13–25. [PubMed] [Google Окумуштуу]
  • Jentsch JD, Woods JA, Groman SM, Seu E. Behavioral characteristics and neural mechanisms mediating performance in a rodent version of the Balloon Analog Risk Task. Neuropsychopharmacology. 2010;35: 1797-1806. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Джонсон PM, Кенни PJ. семиздик келемиштер менен көз карандылык сыяктуу сыйлык бузулушуна жана милдеттүү жеп-жылы тинейджер D2 кабылдагычтар. Nat Neurosci. 2010;13: 635-641. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Kaas JH. Plasticity of sensory and motor maps in adult mammals. Annu Аян Neurosci. 1991;14:137–167. [PubMed] [Google Окумуштуу]
  • Kalivas PW, Lalumiere RT, Knackstedt L, көз менен Шен H. протоколу берүү. Neuropharmacology. 2009;56(Адамдардын тобу 1): 169-173. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Kalivas PW, O'Brien C. Наркоманиялар этапка алары бир патология болуп. Neuropsychopharmacology. 2008;33:166–180. [PubMed] [Google Окумуштуу]
  • Kalivas PW, Richardson-Carlson R, Van Orden G. Cross-sensitization between foot shock stress and enkephalin-induced motor activity. Biol психиатрия. 1986;21:939–950. [PubMed] [Google Окумуштуу]
  • Kalivas PW, Stewart J. тинейджер өткөрүү менен башталган жана мотор ишинин дарыга жана стресс-азгырган маа- көрүнүшү. Brain Рез Brain Рез Аян 1991;16:223–244. [PubMed] [Google Окумуштуу]
  • Kanarek RB, D’Anci KE, Jurdak N, Mathes WF. Running and addiction: precipitated withdrawal in a rat model of activity-based anorexia. Behav Neurosci. 2009;123: 905-912. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Kanarek RB, Marks-Kaufman R, D’Anci KE, Przypek J. Exercise attenuates oral intake of amphetamine in rats. Pharmacol BIOCHEM Behav. 1995;51:725–729. [PubMed] [Google Окумуштуу]
  • Kandel E, Schwartz J, Jessell T. Нейрондук илимдин принциптери. McGraw-Hill Medical; New York: 2000. [Google Окумуштуу]
  • Karama S, Lecours AR, Leroux JM, Bourgouin P, Beaudoin G, Joubert S, et al. Areas of brain activation in males and females during viewing of erotic film excerpts. Hum Brain Mapp. 2002;16:1–13. [PubMed] [Google Окумуштуу]
  • Kasanetz F, Deroche-Gamonet V, Berson N, Balado E, Lafourcade M, Manzoni O, et al. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Илим. 2010;328:1709–1712. [PubMed] [Google Окумуштуу]
  • Кауэр JA, Кабуки RC. Кичинекей пластикалык жана көз карандылык. Nat Аян Neurosci. 2007;8:844–858. [PubMed] [Google Окумуштуу]
  • Келли AE. appetitive түрткү Ventral striatal башкаруу: Тамакка колдонулган жана сыйлык менен байланышкан билим жана ролу. Neurosci Biobehav Аян 2004;27:765–776. [PubMed] [Google Окумуштуу]
  • Келли AE, Berridge KC. табигый сыйлыктардын Нейро: карандылыкты дары актуалдуулугу. J Neurosci. 2002;22: 3306-3311.
  • Kelley AE, Will MJ, Steininger TL, Zhang M, Haber SN. Restricted daily consumption of a highly palatable food (chocolate Ensure(R)) alters striatal enkephalin gene expression. Eur J Neurosci. 2003;18:2592–2598. [PubMed] [Google Окумуштуу]
  • Kelly TH, Robbins G, Martin CA, Fillmore MT, Lane SD, Harrington NG, et al. Individual differences in drug abuse vulnerability: d-amphetamine and sensation-seeking status. Psychopharmacology (Берл) 2006;189: 17-25. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Kenny PJ. Brain reward systems and compulsive drug use. Айлары Pharmacol Sci. 2007;28:135–141. [PubMed] [Google Окумуштуу]
  • Ким С.В., Грант Джей, Адсон Д.Э., Шин Ю.С. Патологиялык кумар оюндарын дарылоодо кош сокур нальтрексон жана плацебо салыштыруу изилдөө. Биологиялык психиатрия. 2001;49:914–921. [PubMed] [Google Окумуштуу]
  • Knutson B, Rick S, Wimmer GE, Prelec D, Loewenstein G. Neural predictors of purchases. Нейрон. 2007;53:147–156. see comment. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Кепп MJ, Gunn RN, Lawrence AD, Каннингэм VJ, Dagher A, Джонс T, жана башкалар. Керебетке оюну учурунда striatal тинейджер бошотуу үчүн далил. Nature. 1998;393:266–268. [PubMed] [Google Окумуштуу]
  • Kohlert JG, Meisel RL. Сексуалдык тажрыйбасы жупталуу байланышкан ядро ​​аял Сирия ГАГАРИНА боюнча тинейджер жооп accumbens sensitizes. Behav Brain Жен. 1999;99:45–52. [PubMed] [Google Окумуштуу]
  • Kolb B, Whishaw IQ. Brain plasticity and behavior. Annu Аян Psychol. 1998;49:43–64. [PubMed] [Google Окумуштуу]
  • Komisaruk BR, Whipple B, Crawford A, Liu WC, Kalnin A, Mosier K. Brain activation during vaginocervical self-stimulation and orgasm in women with complete spinal cord injury: fMRI evidence of mediation by the vagus nerves. Brain Research. 2004;1024:77–88. [PubMed] [Google Окумуштуу]
  • Koob G, Kreek MJ. Стресс, дары сыйлык жолдорунун dysregulation жана бангизатка көз каранды өтүү. J психиатрия белем. 2007;164: 1149-1159. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Koob GF. The role of CRF and CRF-related peptides in the dark side of addiction. Brain Рез. 2010;1314: 3-14. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Koob GF, Kenneth Lloyd G, Mason BJ. Development of pharmacotherapies for drug addiction: a Rosetta stone approach. Nat Аян Drug Discov. 2009;8: 500-515. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Koob ГК, Le Moal M. Drug көз карандылык, сый dysregulation жана allostasis. Neuropsychopharmacology. 2001;24:97–129. [PubMed] [Google Окумуштуу]
  • Koob GF, Le Moal M. Review. Neurobiological mechanisms for opponent motivational processes in addiction. Статс Транс R Soc Lond B Biol Sci. 2008;363: 3113-3123. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Koob GF, Stinus L, Le Moal M, Bloom FE. Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci Biobehav Аян 1989;13:135–140. [PubMed] [Google Окумуштуу]
  • Koob ГК, Volkow ND. көз карандылыкты Neurocircuitry. Neuropsychopharmacology. 2010;35: 217-238. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Koya E, Uejima JL, Wihbey KA, Bossert JM, Hope BT, Shaham Y. Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology. 2009;56(Адамдардын тобу 1): 177-185. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Lader M. Antiparkinsonian medication and pathological gambling. CNS Drugs. 2008;22:407–416. [PubMed] [Google Окумуштуу]
  • Laviola G, Hannan AJ, Macri S, Solinas M, Jaber M. Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis. 2008;31:159–168. [PubMed] [Google Окумуштуу]
  • Le Magnen J. A role for opiates in food reward and food addiction. In: Capaldi ED, Powley TL, editors. Taste, Experience, and Feeding. American Psychological Association; Washington, DC: 1990. pp. 241–254. [Google Окумуштуу]
  • Lejoyeux M, Mc Loughlin M, Adinverted-?es J. Epidemiology of behavioral dependence: literature review and results of original studies. European Psychiatry: the Journal of the Association of European Psychiatrists. 2000;15:129–134. [PubMed] [Google Окумуштуу]
  • Lejoyeux M, Weinstein A. Compulsive buying. Am J Drug Ичкиликти кыянат. 2010;36:248–253. [PubMed] [Google Окумуштуу]
  • Lenoir M, Ahmed SH. Supply of a nondrug substitute reduces escalated heroin consumption. Neuropsychopharmacology. 2008;33:2272–2282. [PubMed] [Google Окумуштуу]
  • Lenoir M, Serre F, Cantin L, Ahmed SH. Intense sweetness surpasses cocaine reward. PLoS ONE. 2007;2: E698. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Leri F, Flores J, Rajabi H, Stewart J. Effects of cocaine in rats exposed to heroin. Neuropsychopharmacology. 2003;28:2102–2116. [PubMed] [Google Окумуштуу]
  • Летт BT. Кайталап дуушарлану- эмес, тескерисинче, күчөтүп amphetamine, Morphine жана кокаин пайдалуу таасирин азайтат. Psychopharmacology (Берл) 1989;98:357–362. [PubMed] [Google Окумуштуу]
  • Lett BT, Grant VL, Byrne MJ, Koh MT. Pairings of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference. Абайла сулу кыз. 2000;34:87–94. [PubMed] [Google Окумуштуу]
  • Leung KS, Cottler LB. Treatment of pathological gambling. Прогр.бөт òpin психиатрия. 2009;22:69–74. [PubMed] [Google Окумуштуу]
  • Lin S, Thomas TC, Storlien LH, Huang XF. Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int J Obes Relat Metab Disord. 2000;24:639–646. [PubMed] [Google Окумуштуу]
  • Lindholm S, Ploj K, Franck J, Nylander I. Repeated ethanol administration induces short- and long-term changes in enkephalin and dynorphin tissue concentrations in rat brain. Ичимдик. 2000;22:165–171. [PubMed] [Google Окумуштуу]
  • Liu X, Palmatier MI, Caggiula AR, Donny EC, Sved AF. Reinforcement enhancing effect of nicotine and its attenuation by nicotinic antagonists in rats. Psychopharmacology (Берл) 2007;194: 463-473. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Lonetti G, Angelucci A, Morando L, Boggio EM, Giustetto M, Pizzorusso T. Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol психиатрия. 2010;67:657–665. [PubMed] [Google Окумуштуу]
  • Lowery EG, Thiele TE. Pre-clinical evidence that corticotropin-releasing factor (CRF) receptor antagonists are promising targets for pharmacological treatment of alcoholism. CNS Neurol Disord Drug максаттар. 2010;9: 77-86. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Lu L, Grimm JW, Hope BT, Shaham Y. Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology. 2004;47(Suppl 1):214–226. [PubMed] [Google Окумуштуу]
  • Лк L, Koya E, Чжай H, үмүт Б.Т., Чазын Y. кокаин көз-жылы ЭрК ролу. Айлары Neurosci. 2006;29:695–703. [PubMed] [Google Окумуштуу]
  • Luscher C, Bellone C. Кокаин-жылдын апрел айында кичинекей пластикалык: көз карандылык ачкычы? Nat Neurosci. 2008;11:737–738. [PubMed] [Google Окумуштуу]
  • Lynch WJ, Piehl KB, Acosta G, Peterson AB, Hemby SE. Aerobic Exercise Attenuates Reinstatement of Cocaine-Seeking Behavior and Associated Neuroadaptations in the Prefrontal Cortex. Biol психиатрия. 2010 [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • MacRae PG, Spirduso WW, Walters TJ, Farrar RP, Wilcox RE. Endurance training effects on striatal D2 dopamine receptor binding and striatal dopamine metabolites in presenescent older rats. Psychopharmacology (Берл) 1987;92:236–240. [PubMed] [Google Окумуштуу]
  • Maj M, Turchan J, Smialowska M, Przewlocka B. Morphine and cocaine influence on CRF biosynthesis in the rat central nucleus of amygdala. Neuropeptides. 2003;37:105–110. [PubMed] [Google Окумуштуу]
  • Majewska MD. Cocaine addiction as a neurological disorder: implications for treatment. Ондогон Рез Monogr. 1996;163:1–26. [PubMed] [Google Окумуштуу]
  • Mameli M, Bellone C, Brown MT, Luscher C. Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nat Neurosci. 2011 [PubMed] [Google Окумуштуу]
  • Markou A, Koob GF. Postcocaine anhedonia. An animal model of cocaine withdrawal. Neuropsychopharmacology. 1991;4:17–26. [PubMed] [Google Окумуштуу]
  • Marks I. Behavioural (non-chemical) addictions.[see comment] British Journal of Addiction. 1990;85:1389–1394. [PubMed] [Google Окумуштуу]
  • Martinez I, Paredes RG. Only self-paced mating is rewarding in rats of both sexes. Horm Behav. 2001;40:510–517. [PubMed] [Google Окумуштуу]
  • Marx MH, Henderson RL, Roberts CL. Positive reinforcement of the bar-pressing response by a light stimulus following dark operant pretests with no after effect. J Comp Physiol Psychol. 1955;48:73–76. [PubMed] [Google Окумуштуу]
  • McBride WJ, Li TK. аракечтик Animal модели: кемирүүчүлөрдүн жогорку алкоголь-ичип, жүрүм-къурау. Экенизди Аян Neurobiol. 1998;12:339–369. [PubMed] [Google Окумуштуу]
  • McClung CA, Nestler EJ. Алары Өзгөрүлгөн ген сөз арачылык кылган. Neuropsychopharmacology. 2008;33:3–17. [PubMed] [Google Окумуштуу]
  • McClung CA, Ulery PG, Perrotti LI, Zachariou V, Berton Оо, Nestler EJ. DeltaFosB: мээде узак мөөнөттүү көнүү боюнча молекулярдык которулуу. Brain Рез Mol Brain Рез. 2004;132:146–154. [PubMed] [Google Окумуштуу]
  • McDaid J, Dallimore JE, Mackie AR, Napier TC. Changes in accumbal and pallidal pCREB and deltaFosB in morphine-sensitized rats: correlations with receptor-evoked electrophysiological measures in the ventral pallidum. Neuropsychopharmacology. 2006a;31: 1212-1226. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • McDaid J, Грэм депутаты, КызылордаЛеон TC. Унаадан айынан маа- differentially сүт эмүүчүлөрдүн мээси лимбикалык чынжыры бою pCREB жана DeltaFosB өзгөртөт. Mol Pharmacol. 2006b;70:2064–2074. [PubMed] [Google Окумуштуу]
  • McElroy SL, Hudson JI, Capece JA, Beyers K, Fisher AC, Rosenthal NR. Topiramate for the treatment of binge eating disorder associated with obesity: a placebo-controlled study. Biol психиатрия. 2007;61:1039–1048. [PubMed] [Google Окумуштуу]
  • Meisel RL, Camp DM, Робинсон TE. аял Сирия ГАГАРИНА сексуалдык жүрүш учурунда ventral striatal тинейджер бир microdialysis изилдөө. Behav Brain Жен. 1993;55:151–157. [PubMed] [Google Окумуштуу]
  • Meisel RL, Mullins AJ. уюлдук механизмдерин жана иш-натыйжалары: аялдар кемирүүчүлөрдүн сексуалдык тажрыйбасы. Brain Рез. 2006;1126: 56-65. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Mellen J, Sevenich MacPhee M. Philosophy of environmental enrichment: Past, present, and future. Zoo Biology. 2001;20: 211-226. [Google Окумуштуу]
  • Mermelstein PG, Бекер JB. учурашпай жыныстык мамилелердин жүрүшүндө аял келемиштер ядросу accumbens жана striatum менен клетка сыртындагы тинейджер жогорулатуу. Behav Neurosci. 1995;109:354–365. [PubMed] [Google Окумуштуу]
  • Meyer AC, Rahman S, Charnigo RJ, Dwoskin LP, Crabbe JC, Bardo MT. Genetics of novelty seeking, amphetamine self-administration and reinstatement using inbred rats. Гендер Brain Behav. 2010 [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Molteni R, Ying Z, Gomez-Pinilla F. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci. 2002;16:1107–1116. [PubMed] [Google Окумуштуу]
  • Nader MA, Daunais JB, Moore T, Nader SH, Moore RJ, Smith HR, et al. Effects of cocaine self-administration on striatal dopamine systems in rhesus monkeys: initial and chronic exposure. Neuropsychopharmacology. 2002;27:35–46. [PubMed] [Google Окумуштуу]
  • Nair SG, Adams-Deutsch T, Epstein DH, Shaham Y. The neuropharmacology of relapse to food seeking: methodology, main findings, and comparison with relapse to drug seeking. Prog Neurobiol. 2009a;89: 18-45. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Nair SG, Adams-Deutsch T, Epstein DH, Shaham Y. The neuropharmacology of relapse to food seeking: methodology, main findings, and comparison with relapse to drug seeking. Prog Neurobiol. 2009b [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • National Institute on Drug Abuse (NIDA) National Institute of Mental Health (NIMH) National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Reward and decision making: opportunities and future directions. Нейрон. 2002;36:189–192. [PubMed] [Google Окумуштуу]
  • Nestler EJ, Kelz MB, Chen J. DeltaFosB: узак мөөнөттүү Нейрондук жана жүрүм-турумдук пластикалык молекулярдык арачы. Brain Рез. 1999;835:10–17. [PubMed] [Google Окумуштуу]
  • Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Аян Neurosci. 2006;7:697–709. [PubMed] [Google Окумуштуу]
  • Noonan MA, Bulin SE, Fuller DC, Eisch AJ. Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J Neurosci. 2010;30: 304-315. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • O’Brien CP. Anticraving medications for relapse prevention: a possible new class of psychoactive medications. J психиатрия белем. 2005;162:1423–1431. [PubMed] [Google Окумуштуу]
  • O'Brien CP. Tao et al. (2010): Интернетке көз карандылык жана DSM-V. Адат. 2010;105: 565. [Google Окумуштуу]
  • O’Brien MS, Anthony JC. Risk of Becoming Cocaine Dependent: Epidemiological Estimates for the United States, 2000–2001. Neuropsychopharmacology. 2005 [PubMed] [Google Окумуштуу]
  • O’Donnell JM, Miczek KA. No tolerance to antiaggressive effect of d-amphetamine in mice. Psychopharmacology (Берл) 1980;68:191–196. [PubMed] [Google Окумуштуу]
  • Olausson P, Jentsch JD, Tronson N, Neve RL, Nestler Э.Дж., Тейлор JR. ядросу accumbens жылы DeltaFosB азык-темир-аспаптык жүрүм-турумун жана түрткү жөнгө салат. J Neurosci. 2006;26: 9196-9204. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Olsen CM, Childs DS, Stanwood GD, Winder DG. Operant sensation seeking requires metabotropic glutamate receptor 5 (mGluR5) PLoS One. 2010;5: E15085. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Olsen CM, Duvauchelle CL. Intra-prefrontal cortex injections of SCH 23390 influence nucleus accumbens dopamine levels 24 h post-infusion. Brain Рез. 2001;922:80–86. [PubMed] [Google Окумуштуу]
  • Olsen CM, Duvauchelle CL. Prefrontal cortex D1 modulation of the reinforcing properties of cocaine. Brain Research. 2006;1075:229–235. [PubMed] [Google Окумуштуу]
  • Olsen CM, Winder DG. Operant sensation seeking engages similar neural substrates to operant drug seeking in C57 mice. Neuropsychopharmacology. 2009;34: 1685-1694. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Olsen CM, Winder DG. Operant sensation seeking in the mouse. J Vis Exp. 2010 [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Olson AK, Eadie BD, Ernst C, Christie BR. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus. 2006;16:250–260. [PubMed] [Google Окумуштуу]
  • Orford J. Hypersexuality: implications for a theory of dependence. Br J Addict Alcohol Other Drugs. 1978;73:299–210. [PubMed] [Google Окумуштуу]
  • Ostlund SB, Balleine BW. On habits and addiction: An associative analysis of compulsive drug seeking. Drug Discov Today Dis Models. 2008;5: 235-245. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Packard MG, Knowlton BJ. Learning and memory functions of the Basal Ganglia. Annu Аян Neurosci. 2002;25:563–593. [PubMed] [Google Окумуштуу]
  • Paredes RG, Vazquez B. What do female rats like about sex? Paced mating. Behav Brain Жен. 1999;105:117–127. [PubMed] [Google Окумуштуу]
  • Petry NM. Should the scope of addictive behaviors be broadened to include pathological gambling? Адат. 2006;101(Suppl 1):152–160. [PubMed] [Google Окумуштуу]
  • Piazza PV, Deminiere JM, Le Moal M, Simon H. Factors that predict individual vulnerability to amphetamine self-administration. Илим. 1989;245:1511–1513. [PubMed] [Google Окумуштуу]
  • Pierce RC, Vanderschuren LJ. Kicking the habit: The neural basis of ingrained behaviors in cocaine addiction. Neurosci Biobehav Аян 2010 [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Кумуралар К.К., Balfour ME, Lehman MN, Richtand Н.М., Ю L, Coolen LM. табигый сыйлык жана андан кийинки сыйлык орозо менен азгырган mesolimbic системасында алары аныкталган. Biol психиатрия. 2010a;67: 872-879. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Pitchers KK, Frohmader KS, Vialou V, Mouzon E, Nestler EJ, Lehman MN, et al. DeltaFosB in the nucleus accumbens is critical for reinforcing effects of sexual reward. Гендер Brain Behav. 2010b [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Porrino LJ, Даунаис JB, Smith HR, Надер MA. кокаин өнүктүрүү таасирлери: кокаин өз алдынча башкаруунун энчилөө приматтардын моделдин изилдөөлөр. Neurosci Biobehav Аян 2004a;27:813–820. [PubMed] [Google Окумуштуу]
  • Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci. 2004b;24:3554–3562. [PubMed] [Google Окумуштуу]
  • Потенза М.Н. Көз карандылыктын бузулушу заттарга байланышпаган шарттарды камтышы керекпи? Адат. 2006;101(Suppl 1):142–151. [PubMed] [Google Окумуштуу]
  • Потенза М.Н. карап чыгуу. Патологиялык кумар жана наркоманиянын нейробиологиясы: сереп жана жаңы ачылыштар. Статс Транс R Soc Lond B Biol Sci. 2008;363: 3181-3189. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Потенза М.Н. чечим кабыл алуу, кумар жана ага байланыштуу жүрүм-турум жаныбарлардын моделдердин маанилүүлүгү: көз карандылык боюнча котормо изилдөө үчүн кесепеттери. Neuropsychopharmacology. 2009;34: 2623-2624. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Prochaska JJ, Hall SM, Humfleet G, Munoz RF, Reus V, Gorecki J, et al. Physical activity as a strategy for maintaining tobacco abstinence: a randomized trial. Мурунку Med. 2008;47: 215-220. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci. 2000;3:238–244. [PubMed] [Google Окумуштуу]
  • Rauschecker JP. Auditory cortical plasticity: a comparison with other sensory systems. Айлары Neurosci. 1999;22:74–80. [PubMed] [Google Окумуштуу]
  • Rebec GV, Christensen JR, Guerra C, Bardo MT. Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Research. 1997a;776:61–67. [PubMed] [Google Окумуштуу]
  • Rebec GV, Grabner CP, Johnson M, Pierce RC, Bardo MT. Transient increases in catecholaminergic activity in medial prefrontal cortex and nucleus accumbens shell during novelty. Neuroscience. 1997b;76:707–714. [PubMed] [Google Окумуштуу]
  • Rivalan M, Ahmed SH, Dellu-Hagedorn F. Risk-prone individuals prefer the wrong options on a rat version of the Iowa Gambling Task. Biol психиатрия. 2009;66:743–749. [PubMed] [Google Окумуштуу]
  • Roberts DC, Morgan D, Liu Y. How to make a rat addicted to cocaine. Prog Neuropsychopharmacol Biol психиатрия. 2007;31: 1614-1624. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Robinson DL, Carelli RM. Distinct subsets of nucleus accumbens neurons encode operant responding for ethanol versus water. Eur J Neurosci. 2008;28: 1887-1894. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Robinson TE, Becker JB. Behavioral sensitization is accompanied by an enhancement in amphetamine-stimulated dopamine release from striatal tissue in vitro. Eur J Pharmacol. 1982;85:253–254. [PubMed] [Google Окумуштуу]
  • Робинсон TE, Berridge KC. дары самаган нейрон негизи: көз карандылыкты түрткү-маа- теориясы. Brain Рез Brain Рез Аян 1993;18:247–291. [PubMed] [Google Окумуштуу]
  • Робинсон TE, Berridge KC. Кызыктыруучу-маа- көз карандылык. Адат. 2001;96:103–114. [PubMed] [Google Окумуштуу]
  • Робинсон TE, Berridge KC. Review. көз карандылыкты унаасында маа- теориясы: кээ бир актуалдуу маселелери. Статс Транс R Soc Lond B Biol Sci. 2008;363: 3137-3146. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Робинсон TE, Kolb B. кыянаттык менен дары таасири менен байланышкан структуралык пластикалык. Neuropharmacology. 2004;47(Suppl 1):33–46. [PubMed] [Google Окумуштуу]
  • Rogers PJ, Smit HJ. Food craving and food “addiction”: a critical review of the evidence from a biopsychosocial perspective. Pharmacol BIOCHEM Behav. 2000;66:3–14. [PubMed] [Google Окумуштуу]
  • Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281:31–35. [PubMed] [Google Окумуштуу]
  • Rothwell NJ, Stock MJ. The development of obesity in animals: the role of dietary factors. Clin Endocrinol Metab. 1984;13:437–449. [PubMed] [Google Окумуштуу]
  • Routtenberg A. “Self-starvation” of rats living in activity wheels: adaptation effects. J Comp Physiol Psychol. 1968;66:234–238. [PubMed] [Google Окумуштуу]
  • Routtenberg A, Kuznesof AW. Self-starvation of rats living in activity wheels on a restricted feeding schedule. J Comp Physiol Psychol. 1967;64:414–421. [PubMed] [Google Окумуштуу]
  • Russo SJ, Dietz DM, Dumitriu D, Моррисон JH, Кабуки RC, Nestler EJ. көз каранды синапс: ядросу accumbens кичинекей жана түзүмдүк пластикалык механизмдери. Айлары Neurosci. 2010;33: 267-276. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Rylkova D, Shah HP, Small E, Bruijnzeel AW. Deficit in brain reward function and acute and protracted anxiety-like behavior after discontinuation of a chronic alcohol liquid diet in rats. Psychopharmacology (Берл) 2009;203: 629-640. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Saal D, Dong Y, Bonci A, Кабуки RC. катаал жана стресс Drugs тинейджер нейрондордо жалпы кичинекей көнүүгө болушат. Нейрон. 2003;37:577–582. [PubMed] [Google Окумуштуу]
  • Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci. 2007;10:1110–1115. [PubMed] [Google Окумуштуу]
  • Sarnyai Z, Shaham Y, Heinrichs SC. The role of corticotropin-releasing factor in drug addiction. Pharmacol Аян 2001;53:209–243. [PubMed] [Google Окумуштуу]
  • Schaffer SD, Zimmerman ML. The sexual addict: a challenge for the primary care provider. Медайым практик. 1990;15:25–26. see comment. [PubMed] [Google Окумуштуу]
  • Шрамм-Sapyta NL, Олсен CM, Winder DG. Кокаин өз алдынча башкаруу чычкан ядросундагы excitatory жооптор кыртышын accumbens азайтат. Neuropsychopharmacology. 2006;31:1444–1451. [PubMed] [Google Окумуштуу]
  • Schulteis G, Markou A, Cole M, Koob GF. Decreased brain reward produced by ethanol withdrawal. Жаздын Natl Acad ЭЕ АКШ А. 1995;92: 5880-5884. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Schwarz L, Kindermann W. Changes in beta-endorphin levels in response to aerobic and anaerobic exercise. Спорт Med. 1992;13:25–36. [PubMed] [Google Окумуштуу]
  • Сигал DS, Манделл AJ. Узак мөөнөттүү д-amphetamine башкаруу: мотор ишине жана stereotypy ырааттуу көбөйтүү. Pharmacol BIOCHEM Behav. 1974;2:249–255. [PubMed] [Google Окумуштуу]
  • Segovia G, Del Arco A, De Blas M, Garrido P, Mora F. Environmental enrichment increases the in vivo extracellular concentration of dopamine in the nucleus accumbens: a microdialysis study. J Нейрон Transm. 2010 [PubMed] [Google Окумуштуу]
  • Self DW, Nestler EJ. Molecular mechanisms of drug reinforcement and addiction. Annu Аян Neurosci. 1995;18:463–495. [PubMed] [Google Окумуштуу]
  • Чазын Y, Матрунчик U, Лк L Де Wit H, Stewart J. дары кайталануу калыбына келтирүү модель: тарыхы, методология жана ири ачылыштар. Psychopharmacology. 2003;168:3–20. see comment. [PubMed] [Google Окумуштуу]
  • Shalev U, Tylor A, Schuster K, Frate C, Tobin S, Woodside B. Long-term physiological and behavioral effects of exposure to a highly palatable diet during the perinatal and post-weaning periods. Physiol Behav. 2010 [PubMed] [Google Окумуштуу]
  • Shippenberg TS, Heidbreder C. кокаин шартталган пайдалуу таасир маа-: дары-дармек жана убактылуу мүнөздөмөсү. J Pharmacol Exp Ther. 1995;273:808–815. [PubMed] [Google Окумуштуу]
  • Simpson DM, Annau Z. Behavioral withdrawal following several psychoactive drugs. Pharmacol BIOCHEM Behav. 1977;7:59–64. [PubMed] [Google Окумуштуу]
  • Sinclair JD, Senter RJ. Development of an alcohol-deprivation effect in rats. QJ Stud Ичкилик. 1968;29:863–867. [PubMed] [Google Окумуштуу]
  • Skinner BF. On the Conditions of Elicitation of Certain Eating Reflexes. Жаздын Natl Acad ЭЕ АКШ А. 1930;16: 433-438. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Smith GB, Heynen AJ, Bear MF. Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Статс Транс R Soc Lond B Biol Sci. 2009;364: 357-367. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Smith MA, Schmidt KT, Iordanou JC, Mustroph ML. Aerobic exercise decreases the positive-reinforcing effects of cocaine. Drug Ичкилик изде. 2008;98: 129-135. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Solecki W, Ziolkowska B, Krowka T, Gieryk A, Filip M, Przewlocki R. Alterations of prodynorphin gene expression in the rat mesocorticolimbic system during heroin self-administration. Brain Рез. 2009;1255:113–121. [PubMed] [Google Окумуштуу]
  • Solinas M, Chauvet C, Thiriet N, El Rawas R, Jaber M. Reversal of cocaine addiction by environmental enrichment. Жаздын Natl Acad ЭЕ АКШ А. 2008;105: 17145-17150. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Solinas M, Thiriet N, Chauvet C, Jaber M. Prevention and treatment of drug addiction by environmental enrichment. Prog Neurobiol. 2010 [PubMed] [Google Окумуштуу]
  • Solinas M, Thiriet N, El Rawas R, Lardeux V, Jaber M. Environmental enrichment during early stages of life reduces the behavioral, neurochemical, and molecular effects of cocaine. Neuropsychopharmacology. 2009;34:1102–1111. [PubMed] [Google Окумуштуу]
  • Solomon RL. The opponent-process theory of acquired motivation: the costs of pleasure and the benefits of pain. Am Psychol. 1980;35:691–712. [PubMed] [Google Окумуштуу]
  • Solomon RL, Corbit JD. An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol Аян 1974;81:119–145. [PubMed] [Google Окумуштуу]
  • Spanagel R, Holter SM. Long-term alcohol self-administration with repeated alcohol deprivation phases: an animal model of alcoholism? Ичкилик Ичкилик. 1999;34:231–243. [PubMed] [Google Окумуштуу]
  • Spangler R, Goddard NL, Avena NM, Hoebel BG, Leibowitz SF. Elevated D3 dopamine receptor mRNA in dopaminergic and dopaminoceptive regions of the rat brain in response to morphine. Brain Рез Mol Brain Рез. 2003;111:74–83. [PubMed] [Google Окумуштуу]
  • Спэнгер R, Wittkowski KM, Goddard NL, Avena Н.М., Hoebel BG, Leibowitz SF. чычкан мээнин сыйлык аймактарында ген сөз канттын Opiate сыяктуу таасирлери. Brain Рез Mol Brain Рез. 2004;124:134–142. [PubMed] [Google Окумуштуу]
  • Spires TL, Hannan AJ. Nature, nurture and neurology: gene-environment interactions in neurodegenerative disease. FEBS Anniversary Prize Lecture delivered on 27 June 2004 at the 29th FEBS Congress in Warsaw. FEBS J. 2005;272:2347–2361. [PubMed] [Google Окумуштуу]
  • St Onge JR, Floresco SB. Dopaminergic modulation of risk-based decision making. Neuropsychopharmacology. 2009;34:681–697. [PubMed] [Google Окумуштуу]
  • Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability. Pharmacol BIOCHEM Behav. 2009;92: 377-382. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Steiner H, Gerfen CR. Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Рез. 1998;123:60–76. [PubMed] [Google Окумуштуу]
  • Stewart J. Reinforcing effects of light as a function of intensity and reinforcement schedule. Journal of comparative and physiological psychology. 1960;53:187–193. [PubMed] [Google Окумуштуу]
  • Stewart J. Pathways адатым үчүн дары-алуу үчүн дарыга жана стресс-азгырган кайталануу Нейробиология. J психиатрия Neurosci. 2000;25: 125-136. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Stuber GD, Hopf FW, Hahn J, Cho SL, Guillory A, Bonci A. Voluntary Ethanol Intake Enhances Excitatory Synaptic Strength in the Ventral Tegmental Area. Ичкилик Clin Exp Рез. 2008a [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Stuber GD, Klanker M, de Ridder B, Bowers MS, Joosten RN, Feenstra MG, et al. Reward-Predictive Cues Enhance Excitatory Synaptic Strength onto Midbrain Dopamine Neurons. Илим. 2008b;321: 1690-1692. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Tao R, Huang X, Wang J, Чжан H, Чжан Y, Li M. интернет көз карандылыкты диагностикалык критерийлер сунушталган. Адат. 2010;105:556–564. [PubMed] [Google Окумуштуу]
  • Teegarden SL, Бэйл TL. Диеталык артыкчылык төмөндөйт диеталык ураган деген кооптонуулар жана коркунуч көбөйүп өндүрүшөт. Biol психиатрия. 2007;61:1021–1029. Epub 2007 Jan 1017. [PubMed] [Google Окумуштуу]
  • Tejeiro Salguero RA, Моран RM. өспүрүмдөр ойноп маселе Video Game өлчөө. Адат. 2002;97:1601–1606. [PubMed] [Google Окумуштуу]
  • Thanos PK, Tucci A, Stamos J, Robison L, Wang GJ, Anderson BJ, et al. Chronic forced exercise during adolescence decreases cocaine conditioned place preference in Lewis rats. Behav Brain Жен. 2010;215: 77-82. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Thiel KJ, Engelhardt B, Hood LE, Peartree NA, Neisewander JL. The interactive effects of environmental enrichment and extinction interventions in attenuating cue-elicited cocaine-seeking behavior in rats. Pharmacol BIOCHEM Behav. 2011;97: 595-602. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Thiel KJ, Sanabria F, Pentkowski NS, Neisewander JL. Anti-craving effects of environmental enrichment. Int J Neuropsychopharmacol. 2009;12: 1151-1156. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Thomas MJ, Kalivas PW, mesolimbic тинейджер системасы жана кокаин көз менен Чазын Y. алары аныкталган. Br J Pharmacol. 2008;154: 327-342. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Turchan J, Przewlocka B, Toth G, Lason W, Borsodi A, Przewlocki R. The effect of repeated administration of morphine, cocaine and ethanol on mu and delta opioid receptor density in the nucleus accumbens and striatum of the rat. Neuroscience. 1999;91:971–977. [PubMed] [Google Окумуштуу]
  • Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007;12:227–462. [PubMed] [Google Окумуштуу]
  • Uhlrich DJ, Manning KA, O’Laughlin ML, Lytton WW. Photic-induced sensitization: acquisition of an augmenting spike-wave response in the adult rat through repeated strobe exposure. J Neurophysiol. 2005;94:3925–3937. [PubMed] [Google Окумуштуу]
  • Unterwald EM, Ho A, Rubenfeld JM, Kreek MJ. Time course of the development of behavioral sensitization and dopamine receptor up-regulation during binge cocaine administration. J Pharmacol Exp Ther. 1994a;270:1387–1396. [PubMed] [Google Окумуштуу]
  • Unterwald EM, Rubenfeld JM, Kreek MJ. Repeated cocaine administration upregulates kappa and mu, but not delta, opioid receptors. Neuroreport. 1994b;5:1613–1616. [PubMed] [Google Окумуштуу]
  • Valjent E, Pages C, Herve D, Girault JA, Caboche J. Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci. 2004;19:1826–1836. [PubMed] [Google Окумуштуу]
  • Van de Weerd HA, Van Loo PLP, Van Zutphen LFM, Koolhaas JM, Baumans V. Strength of preference for nesting material as environmental enrichment for laboratory mice. Applied Animal Behaviour Science. 1998;55: 369-382. [Google Окумуштуу]
  • van den Bos R, Lasthuis W, den Heijer E, van der Harst J, Spruijt B. Toward a rodent model of the Iowa gambling task. Behav Рез ыкмалары. 2006;38:470–478. [PubMed] [Google Окумуштуу]
  • van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Жаздын Natl Acad ЭЕ АКШ А. 1999;96: 13427-13431. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • van Praag H, Kempermann G, Gage FH. Neural consequences of enviromental enrichment. Nat Аян Neurosci. 2000a;1:191–198. [PubMed] [Google Окумуштуу]
  • van Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nat Аян Neurosci. 2000b;1:191–198. [PubMed] [Google Окумуштуу]
  • Vezina P, Giovino А.А., Даанышман RA, Stewart J. Environment-айкын Morphine жана amphetamine кесепеттерин иштетип, таяныч ортосунда кайчылаш-маа-. Pharmacol BIOCHEM Behav. 1989;32:581–584. [PubMed] [Google Окумуштуу]
  • Volkow ND, Fowler JS, Wang Г.Ж., Hitzemann R, Логан J, Schlyer DJ да, ал. Төмөндөттү тинейджер D2 сезгич болушу кокаин зомбулук менен кыскартылган түздөн-зат менен байланышкан. Synapse. 1993;14:169–177. [PubMed] [Google Окумуштуу]
  • Volkow ND, Fowler JS, Wang Г.Ж., Swanson JM. дары-дармек жана көз карандылык менен тинейджер: иштетүүчү изилдөө жана дарылоо кесепеттерин натыйжалары. Молекулярдык психиатрия. 2004;9:557–569. [PubMed] [Google Окумуштуу]
  • Volkow ND, Fowler JS, Wolf AP, Schlyer D, Shiue CY, Alpert R, et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. J психиатрия белем. 1990;147:719–724. [PubMed] [Google Окумуштуу]
  • Volkow ND, Wang GJ, Fowler JS, Logan J, Hitzemann R, Ding YS, et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Ичкилик Clin Exp Рез. 1996;20:1594–1598. [PubMed] [Google Окумуштуу]
  • Volkow ND, акылман RA. Кантип наркомания ооруулары бизге ашыкча түшүнүүгө жардам бере алат? Nature Neuroscience. 2005;8:555–560. [PubMed] [Google Окумуштуу]
  • Vučetić Z, Киммел J, K Totoki, Hollenbeck E, Reyes TM. Эне жогорку семиз диета тинейджер жана наркотикалык байланыштуу ген methylation жана ген сөздөр өзгөртөт. Эндокринология. 2010;151: 4756-4764. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Уоллес DL, Vialou V, Rios L, Карл-Florence TL, Chakravarty S, Кумар A, .Удаалаш. ядросунда DeltaFosB таасири табигый сыйлык байланышкан жүрүм-accumbens. J Neurosci. 2008;28: 10272-10277. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Wanat MJ, Sparta DR, Hopf FW, Bowers MS, Melis M, Bonci A. Strain specific synaptic modifications on ventral tegmental area dopamine neurons after ethanol exposure. Biol психиатрия. 2009a;65: 646-653. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Wanat MJ, Willuhn I, Clark JJ, Phillips PE. Phasic dopamine release in appetitive behaviors and drug addiction. Прогр.бөт Drug Abuse Аян 2009b;2: 195-213. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Wang GJ, Volkow ND, Telang F, Jayne M, Ma J, Rao M, et al. Exposure to appetitive food stimuli markedly activates the human brain. Neuroimage. 2004a;21:1790–1797. [PubMed] [Google Окумуштуу]
  • Wang Г.Ж., Volkow ND, Киры PK, Fowler JS. семирүү жана наркомания ооруулары ортосундагы окшоштук сыяктуу neurofunctional элестетүүлөр менен бааланат: бир түшүнүк карап. Journal of Addictive Diseases. 2004b;23:39–53. [PubMed] [Google Окумуштуу]
  • Ward SJ, Walker EA, Dykstra LA. Effect of Cannabinoid CB1 Receptor Antagonist SR141714A and CB1 Receptor Knockout on Cue-Induced Reinstatement of Ensure[reg] and Corn-Oil Seeking in Mice. Neuropsychopharmacology. 2007;32:2592–2600. [PubMed] [Google Окумуштуу]
  • Wee S, Koob ГК. кыянаттык менен дары-каршы таасир dynorphin-KAPPA Опиоиддердин системасынын ролу. Psychopharmacology (Берл) 2010;210: 121-135. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Weiss F, Markou A, Lorang MT, Koob ГК. ядросу accumbens менен жаштын клетка сыртындагы тинейджер өлчөмү чексиз мүмкүндүк алуу жергиликтүү өз алдынча башкаруу кийин кокаин алуу учурунда тёмёндёгён. Brain Рез. 1992;593:314–318. [PubMed] [Google Окумуштуу]
  • Welte J, Barnes G, Wieczorek W, Tidwell MC, Parker J. Alcohol and gambling pathology among U.S. adults: prevalence, demographic patterns and comorbidity. Ичимдикке боюнча изилдөөлөр журналы. 2001;62:706–712. [PubMed] [Google Окумуштуу]
  • Werme M, Messer C, Olson L, Gilden L, Thoren P, Nestler EJ, et al. Delta FosB regulates wheel running. J Neurosci. 2002;22:8133–8138. [PubMed] [Google Окумуштуу]
  • Werme M, Thoren P, Olson L, Brene S. Running and cocaine both upregulate dynorphin mRNA in medial caudate putamen. Eur J Neurosci. 2000;12:2967–2974. [PubMed] [Google Окумуштуу]
  • Winder DG, Эгли RE, Шрамм NL, Matthews RT. дары сыйлык схемотехникасын кичинекей пластикалык. Прогр.бөт Mol Med. 2002;2:667–676. [PubMed] [Google Окумуштуу]
  • Winstanley CA. The orbitofrontal cortex, impulsivity, and addiction: probing orbitofrontal dysfunction at the neural, neurochemical, and molecular level. Ann NY Акад Sci. 2007;1121:639–655. [PubMed] [Google Окумуштуу]
  • Winstanley CA. Gambling rats: insight into impulsive and addictive behavior. Neuropsychopharmacology. 2011;36: 359. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Winstanley CA, Cocker PJ, Rogers RD. Dopamine Modulates Reward Expectancy During Performance of a Slot Machine Task in Rats: Evidence for a `Near-miss’ Effect. Neuropsychopharmacology. 2011 [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Winstanley CA, Olausson P, Taylor JR, Jentsch JD. Insight into the relationship between impulsivity and substance abuse from studies using animal models. Ичкилик Clin Exp Рез. 2010;34: 1306-1318. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Wise RA. Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox Рез. 2008;14: 169-183. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Wise RA, Munn E. Withdrawal from chronic amphetamine elevates baseline intracranial self-stimulation thresholds. Psychopharmacology (Берл) 1995;117:130–136. [PubMed] [Google Окумуштуу]
  • Wojnicki FH, Робертс DC, Коруин RL. азык-түлүк эмес ажыратылган келемиштер менен ичимдикке тибиндеги жүрүш-тарыхына кийин азык-түлүк Таблеткалар жана өсүмдүк кыскарышына үчүн operant аткаруу боюнча baclofen таасирлери. Pharmacol BIOCHEM Behav. 2006;84: 197-206. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Wood DA, Rebec GV. Dissociation of core and shell single-unit activity in the nucleus accumbens in free-choice novelty. Behav Brain Жен. 2004;152:59–66. [PubMed] [Google Окумуштуу]
  • Young KS. Internet Addiction: The Emergence of a New Clinical Disorder. КиберПсихология жана жүрүм-турум. 1998;1: 237-244. [Google Окумуштуу]
  • Zeeb FD, Robbins TW, Winstanley CA. Serotonergic and dopaminergic modulation of gambling behavior as assessed using a novel rat gambling task. Neuropsychopharmacology. 2009;34:2329–2343. [PubMed] [Google Окумуштуу]
  • Zhu J, Apparsundaram S, Bardo MT, Dwoskin LP. Environmental enrichment decreases cell surface expression of the dopamine transporter in rat medial prefrontal cortex. J Neurochem. 2005;93:1434–1443. [PubMed] [Google Окумуштуу]
  • Zijlstra F, Booij J, van den Brink W, Franken IH. Striatal dopamine D2 receptor binding and dopamine release during cue-elicited craving in recently abstinent opiate-dependent males. Eur Neuropsychopharmacol. 2008;18:262–270. [PubMed] [Google Окумуштуу]
  • Zlebnik NE, Anker JJ, Gliddon LA, Carroll ME. Reduction of extinction and reinstatement of cocaine seeking by wheel running in female rats. Psychopharmacology (Берл) 2010;209: 113-125. [PMC акысыз макала] [PubMed] [Google Окумуштуу]
  • Zuckerman M. Sensation seeking and the endogenous deficit theory of drug abuse. NIDA Research Monograph. 1986;74:59–70. [PubMed] [Google Окумуштуу]
  • Zuckerman M. Sensation seeking: The balance between risk and reward. In: Lipsitt L, Mitnick L, editors. Self-Regulatory Behavior and Risk-Taking: Causes and Consequences. Ablex Publishing Corporation; Norwood, NJ: 1991. pp. 143–152. [Google Окумуштуу]