Comment: Opioids released during mating have inhibitory influence on sexual behavior — by increasing prolactin.

2000 Jul;72(1):20-8.
Yang SP1, Lee Y, Voogt JL.

Abstract

Mating in female rats induces an acute prolactin (PRL) release within 60 min and twice-daily surges of PRL throughout the first 10 days of pregnancy to maintain luteal function. Little is known about the brain mechanism whereby the vaginocervical stimulation is processed to induce PRL release. Our recent results revealed an increase in Fos expression in the arcuate nucleus (ARC) following mating in the intact estrous rat, suggesting that a neuronal network in the brain area may participate in conveying and integrating the genitosensory stimulation. To further investigate the phenotype of activated neurons in the ARC, the present study examined whether beta-endorphin (beta-END) and/or dopamine (DA) neurons are activated by mating, and if so, whether activation is involved in the mating-induced acute release of PRL and the establishment of the twice-daily surges of PRL. In experiment 1, proestrous rats receiving intromissions (mated group) from males or mounts without intromission (mounted group) were sacrificed along with rats taken directly from their home cage (control group) 60 min after the beginning of mating or mounting. Expression of Fos in beta-END neurons and expression of fos-related antigen (FRA) in DA neurons, which were labeled by tyrosine hydroxylase (TH) antibody in the ARC were examined by double-label immunocytochemistry. In experiment 2, proestrous females with indwelling atrial catheters were mated with males. Naloxone (10 microl/min, 2 mg/10 min), an opiate antagonist, or saline was infused before, during and after mating. Blood samples were collected during the mating session and also at several times 3 days after mating. The results showed that mating induced a significant increase in the percentage of beta-END/Fos colabeled neurons and a significant decrease in the number of beta-END cells in all subdivisions of the ARC. In contrast, neither the percentage of FRA/TH colabeled cells nor the number of TH cells was influenced by mating. Mating induced an acute increase in PRL release in saline-treated control animals within 30 min and a subsequent diurnal surge (18.00 h) and a nocturnal surge of PRL (2.00 h) 3 days after mating. Naloxone infusion during mating blocked the mating-induced acute PRL response and the diurnal surge of PRL 3 days after mating, but affected neither the nocturnal surge of PRL nor the incidence of pregnancy. These results demonstrate that (1) beta-END neurons but not DA neurons in the ARC are activated in response to mating in proestrous rats, and (2) the mating-induced activation of beta-END neurons may participate in the acute response of PRL release to mating and the memory mechanism for the establishment of the diurnal PRL surge, but not the nocturnal PRL surge in early pregnancy. These results lead to a conclusion that endogenous opioid peptides may be involved in the neuronal transmission of genitosensory stimulation to induce PRL secretion.