Comment: Vasopressin only works by binding to oxytocin receptors.
Psychoneuroendocrinology
Zhimin Song, Johnathan M. Borland, Tony E. Larkin, Maureen O’Malley, H. Elliott Albers Ph.D.
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
Abstract
Social reward plays a fundamental role in shaping human and animal behavior. The rewarding nature of many forms of social behavior including sexual behavior, parental behavior, and social play has been revealed using well-established procedures such as the conditioned place preference test. Many motivated social behaviors are regulated by the nonapeptides oxytocin (OT) and arginine vasopressin (AVP) through their actions in multiple brain structures. Interestingly, there are few data on whether OT or AVP might contribute to the rewarding properties of social interaction by their actions within brain structures that play a key role in reward mechanisms such as the ventral tegmental area (VTA). The goal of the present study was to investigate the role of OT and AVP in the VTA in regulating the reward-like properties of social interactions. Social interactions between two male hamsters reduced a spontaneous place avoidance in hamsters injected with saline control. Interestingly, however, OT and AVP injected into the VTA induced a significant two-fold reduction in place avoidance for the social interaction chamber when compared to control injections of vehicle. Finally, because OT and AVP can act on each other’s receptors to influence social behavior, we also injected highly selective OTR and V1aR agonists and antagonists to determine whether OT or AVP V1a receptors were responsible for mediating the effects of these neuropeptides on social reward. Our results not only demonstrated that OT and AVP activate OTRs and not V1aRs to mediate social reward, they also demonstrated that the activation of OT receptors in the VTA is essential for the expression of the rewarding properties of social interactions.